Gary Laverty
University of Delaware
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gary Laverty.
Journal of Comparative Physiology B-biochemical Systemic and Environmental Physiology | 1989
Gary Laverty; Robert F. Wideman
SummaryRenal clearance studies were performed in European starlings (Sturnus vulgaris) in order to determine the extent of ureteral sodium excretion under control conditions and during an acute, hyperosmotic salt stress. These experiments also estimated the contribution of the lower intestine (colon and cloaca) to postrenal solute reabsorption by making both cloacal and ureteral urine collections in the same birds. A comparison of ureteral vs cloacal excretion rates found significantly higher sodium (9.09±1.30 vs 1.03±0.38 μEq·kg−1·min−1) and chloride (4.15±0.56 vs 1.00±0.38 μEq·kg−1·min−1) excretion rates during the ureteral collections. Fractional excretion of sodium was also significantly higher during ureteral collections, but this value did not exceed 1% of the filtered sodium load during either collection series. Urine flow rate was significantly higher during cloacal collections, suggesting osmotic back-flux of water across the cloacal wall. Infusion of a 1M NaCl solution resulted in rapid increases in glomerular filtration rate (GFR), urine flow rate, and urine osmolality. Fractional sodium and water reabsorption decreased by 11% and 4%, respectively. Glomerular counts and size distribution profiles, measured by in vivo alcian blue labelling, provided no evidence for a reduction in the number of filtering glomeruli during hyperosmotic saline loading. We conclude that renal sodium excretion rates for the starling are similar to those seen in other avian species and in mammals. These studies also provide direct evidence for postrenal modification of urine in this species, even under conditions of continuous flow. Acute hyperosmotic salt stress can, under some conditions, cause increased rather than decreased GFR, indicating multiple regulatory pathways. Finally, there was no evidence in these studies for glomerular shutdown in response to salt loading.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 1998
Gayle Gocek Sutterlin; Gary Laverty
Methods have been developed for producing functional, transporting monolayers of avian proximal tubule (PT) cells. A highly homogenous fraction of PT fragments was prepared by enzymatic digestion (collagenase + Dispase) of chick (3- to 5-day-old) kidneys, followed by Percoll gradient centrifugation. The PT fraction was enriched in glucose-6-phosphatase, a proximal enzyme marker, and reduced in specific activity of hexokinase, a distal marker. PT fragments were grown to confluence in serum-free media on collagen-coated permeable filter supports. Electron microscopy of confluent monolayers revealed numerous microvilli and mitochondria, central cilia, and tight junctions, all characteristic of PT cells. gamma-Glutamyltranspeptidase, a proximal brush-border enzyme, showed threefold higher activity on apical than on basolateral sides of the monolayer. The electrophysiological characteristics of monolayers were investigated by voltage-clamp techniques. Monolayers displayed low transepithelial resistances (40-60 Omega . cm2), lumen-negative potentials, and baseline currents of 6-12 microA/cm2 (with or without 5 mM glucose). Both alpha-methyl-D-glucose (2 mM), a nonmetabolizable hexose, and phenylalanine (2 mM) significantly stimulated short-circuit current when added to the mucosal side of glucose-free monolayers. Phloridzin, a specific inhibitor of Na+-coupled glucose transport, significantly inhibited short-circuit current, as did 10(-5) M amiloride. Monolayers also expressed net secretory transport of urate. This cell culture preparation may provide a useful working model for the study of avian PT transport.Methods have been developed for producing functional, transporting monolayers of avian proximal tubule (PT) cells. A highly homogenous fraction of PT fragments was prepared by enzymatic digestion (collagenase + Dispase) of chick (3- to 5-day-old) kidneys, followed by Percoll gradient centrifugation. The PT fraction was enriched in glucose-6-phosphatase, a proximal enzyme marker, and reduced in specific activity of hexokinase, a distal marker. PT fragments were grown to confluence in serum-free media on collagen-coated permeable filter supports. Electron microscopy of confluent monolayers revealed numerous microvilli and mitochondria, central cilia, and tight junctions, all characteristic of PT cells. γ-Glutamyltranspeptidase, a proximal brush-border enzyme, showed threefold higher activity on apical than on basolateral sides of the monolayer. The electrophysiological characteristics of monolayers were investigated by voltage-clamp techniques. Monolayers displayed low transepithelial resistances (40-60 Ω ⋅ cm2), lumen-negative potentials, and baseline currents of 6-12 μA/cm2 (with or without 5 mM glucose). Both α-methyl-d-glucose (2 mM), a nonmetabolizable hexose, and phenylalanine (2 mM) significantly stimulated short-circuit current when added to the mucosal side of glucose-free monolayers. Phloridzin, a specific inhibitor of Na+-coupled glucose transport, significantly inhibited short-circuit current, as did 10-5 M amiloride. Monolayers also expressed net secretory transport of urate. This cell culture preparation may provide a useful working model for the study of avian PT transport.
Acta Agriculturae Scandinavica Section A-animal Science | 1996
Jakob Sehested; Lars Diernæs; Gary Laverty; Peter Detlef Møller; Erik Skadhauge
Abstract The properties of isolated sheets of bovine rumen epithelium in the Ussing chamber system were studied. The viability and time-dependent change in performance, as expressed by electrical parameters, was acceptable and comparable to what has been obtained with other epithelia in vitro. The viability and time-dependent change in performance was not influenced by transport time (5 to 45 minutes) between the slaughterhouse and the laboratory. Flux rates of 22Na+ and 14C-propionate showed that an equilibration period of 45 minutes after addition of tracers will be sufficient to obtain steady-state conditions with this epithelium. Compared with the time-dependent changes in electrical parameters, this shows that rumen epithelium cannot truly be used as its own control over time. The varying papillation caused surface enlargement factors between one and five, estimated by the dry weight of stripped epithelium. However, the dry weight was not correlated to epithelial capacitance or flux rates. It is conc...
Journal of Morphology | 1991
Gary Laverty; Mary Alberici
A histochemical investigation of kidney and lower intestine of the European starling (Sturnus vulgaris) shows no carbonic anhydrase activity in proximal convoluted tubules, although activity is seen in similarly prepared sections of rat proximal tubules. Early distal tubule cells in the starling are stained throughout the cytoplasm and at the apical and highly infolded basolateral membranes. Late distal tubules lose apical activity and have reduced basolateral infolding, resulting in less intense staining. Darkly stained intercalated cells appear in the connecting tubules and cortical collecting ducts. Both of these segments also show intense basolateral staining. Medullary cones of the starling are highly organized, with central zones containing unstained thin descending limbs of loops of Henle, surrounded by both medullary collecting ducts with only scattered cells staining for enzyme, and by thick ascending limb segments. The latter contain many uniformly stained cells intermingled with occasional unstained cells. Scattered cells of the starling colonic villi demonstrate intense apical brush border membrane staining as well as cytoplasmic staining. Cells lining the cloaca stain less intensely. A biochemical assay for carbonic anhydrase was used to quantify enzyme activity in these tissues. Starling kidney contained 1.96 ± 0.33 (mean ± SEM) enzyme units/mg protein, less than half the activity seen in rat kidney. Stripped colonic epithelium contained 0.66 ± 0.15 enzyme units/mg protein. These quantitative results correlate well with the interpretations derived from the histochemical observations. The lack of proximal tubule carbonic anhydrase activity suggests that the avian kidney relies more on distal nephron segments to achieve net acidification of the urine.
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2012
Gary Laverty; Ashley Anttila; Jenava Carty; Varudhini Reddy; Jamie Yum; Sighvatur S. Árnason
In primary cell cultures of the avian (Gallus gallus) renal proximal tubule parathyroid hormone and cAMP activation generate a Cl(-)-dependent short circuit current (I(SC)) response, consistent with net transepithelial Cl(-) secretion. In this study we investigated the expression and physiological function of the Na-K-2Cl (NKCC) transporter and CFTR chloride channel, both associated with Cl(-) secretion in a variety of tissues, in these proximal tubule cells. Using both RT-PCR and immunoblotting approaches, we showed that NKCC and CFTR are expressed, both in proximal tubule primary cultures and in a proximal tubule fraction of non-cultured (native tissue) fragments. We also used electrophysiological methods to assess the functional contribution of NKCC and CFTR to forskolin-activated I(SC) responses in filter grown cultured monolayers. Bumetanide (10 μM), a specific blocker of NKCC, inhibited forskolin activated I(SC) by about 40%, suggesting that basolateral uptake of Cl(-) is partially mediated by NKCC transport. In monolayers permeabilized on the basolateral side with nystatin, forskolin activated an apical Cl(-) conductance, manifested as bidirectional diffusion currents in the presence of oppositely directed Cl(-) gradients. Under these conditions the apical conductance appeared to show some bias towards apical-to-basolateral Cl(-) current. Two selective CFTR blockers, CFTR Inhibitor 172 and GlyH-101 (both at 20 μM) inhibited the forskolin activated diffusion currents by 38-68%, with GlyH-101 having a greater effect. These data support the conclusion that avian renal proximal tubules utilize an apical CFTR Cl(-) channel to mediate cAMP-activated Cl(-) secretion.
Comparative Biochemistry and Physiology Part A: Physiology | 1997
Gary Laverty
The colon of the domestic fowl sustains a reabsorptive Na+ current on both high- and low-sodium diets. However, there is a marked shift in the apical transport step under these two extreme conditions, from amino acid/hexose cotransport on high-salt diets to amiloride-sensitive Na+ channels on low-salt diets. The present experiments were performed to study colonic Na+ transport in another galliform species, the Japanese quail (Coturnix coturnix). Birds were maintained on a commercial game feed containing 0.18% Na+ (78 mumoles/g), an intermediate level of salt intake. Experiments were performed on unstripped colons in standard Ussing chambers with bicarbonate/CO2 buffer solution on both sides. Baseline values (n = 11) for PD (3.13 +/- 0.68 mV) and short circuit current (SCC, 30.87 +/- 7.79 microA/cm2) were lower than those reported for chickens on a similar diet, whereas tissue resistance (76.06 +/- 4.19 omega.cm2) was similar. Addition of amino acids (4 mM leucine + lysine) increased SCC by 10.85 +/- 1.97 microA/cm2. Both phloridzin (1 mM) and amiloride (10(-5) M) decreased SCC, by 7.05 +/- 1.26 and 9.64 +/- 2.68 microA/cm2, respectively. Thus, on this diet the quail colonic epithelium maintains both amino acid/hexose cotransporter activity and amiloride sensitive channel activity. Arginine vasotocin (10(-6) M) caused a small, but consistent decrease in SCC, while acetazolamide increased SCC. Aldosterone (128 micrograms/kg), given 4 hr prior to the experiment (n = 4) significantly reduced the amino acid stimulated SCC. These results confirm, for the Japanese quail, the presence of multiple apical Na+ entry mechanisms in colonic epithelium. Amino acid cotransporter activity, in particular, appears to be highly sensitive to aldosterone suppression.
Journal of Comparative Physiology B-biochemical Systemic and Environmental Physiology | 1994
Gary Laverty; K. Holtug; Vibeke S. Elbrønd; Y. Ridderstråle; Erik Skadhauge
Experiments were performed on isolated, stripped colonic epithelia of low-salt-adapted hens (Gallus domesticus) in order to characterize acid secretion by this tissue. With symmetric, weak buffer solutions, colonic epithelia acidified both mucosal and serosal sides. Titration measurements of the mucosal acidification rate (pH-stat technique) averaged 1.63±0.25 μEq·cm-2·h-1. Mucosal acidification was also evident in colons from high-salt-adapted birds and in low-salt-adapted coprodeum, but was completely abolished in the high-salt coprodeum. Mucosal acidification by low-salt-adapted colonic epithelium was unaffected by sodium replacement, mucosal amiloride (10-3 mol·l-1), and serosal ouabain (5x10-4 mol·l-1), although all three treatments significantly reduced or reversed the short-circuit current. Acetazolamide (10-3 mol·l-1, serosal) reduced mucosal acidification by 15% and simultaneously increased short-circuit current by a similar amount. Colonic epithelia incubated in glucose-free solutions had significantly lower acidification rates (0.59±0.13 μEq·cm-2·h-1, P<0.002 versus controls) and addition of glucose (15 mmol·l-1), but not galactose, partially restored acidification to control levels. Anoxia (N2 gassing) completely inhibited short-circuit current, but reduced acidification by only 30%. A surface microclimate pH, nearly 2 pH units more acidic than the bath pH of 7.1–7.4 was measured in low-salt-adapted colon and coprodeum. The acid microclimate of both tissues was partially attenuated by adaptation to a high-salt diet. Colonic microclimate pH was dependent on the presence of glucose and sensitive to the bath pH. Histochemical staining for carbonic anhydrase localized this enzyme to cytoplasm and lateral margins of one subfraction of colonic cells, and to cytoplasm in a second subpopulation Intense staining was also evident in subepithelial capillaries. These results suggest that a large part of mucosal acidification and maintenance of the acid microclimate in hen colon may be dependent on glycolysis and metabolic acid production, although a smaller, electrogenic and acetazolamidesensitive component also appears to exist. This latter component may become more prominent under conditions of cellular acidification.
Kidney & Blood Pressure Research | 2007
Anastasia Grigorieva; Genevieve S. Griffiths; Hong Zhang; Gary Laverty; Minghai Shao; Leslie Taylor; Patricia A. Martin-DeLeon
Background:A role for Sperm Adhesion Molecule 1 (SPAM1) hyaluronidase in murine kidney, where Spam1 transcript levels have been reported to be higher in males, has not been clarified. Methods:Spam1 RNA and protein were studied using RT-PCR, in situhybridization, Western blotting, immunohistochemistry and hyaluronic acid substrate gel electrophoresis. Urine volume and osmolality were studied in wild-type and Spam1 null mice. Results: While RT-PCR supported a tendency of higher RNA expression in males, no sex difference for the protein was detectable in the cortex, medulla, and urine. Transcripts were predominantly localized in the proximal tubules and glomeruli, with lower levels in the medulla. Similarly, Western blotting and immunohistochemistry revealed that SPAM1 is more abundant in the cortex. Hyaluronidase activity was absent at neutral and acidic pH: suggesting non-enzymatic role(s) for SPAM1. Wild-type and Spam1 null mice given free access to water showed significantly reduced urine volumes (p < 0.01; n = 12) in the latter.Baseline urine osmolality was similar in both, leading to a significantly (p < 0.05) lower osmolar output in the nulls. After water deprivation (24 h), a significant (p < 0.01) increase in urine osmolality was seen only for wild-type mice. Conclusion: SPAM1 is implicated in fluid reabsorption and urine concentration.
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2009
Vibeke S. Elbrønd; Gary Laverty; Vibeke Dantzer; C. Grøndahl; Erik Skadhauge
The structure and function of the lower intestinal tract of Rhea americana were characterized to evaluate the evolutionary relationship to other struthioniform and avian species. In 5 rheas the gross anatomy and the light and transmission electron microscopy were studied in parallel to in vitro electrophysiological measurements of ion transport. The mucosa in the colon was amplified with villi, often branched, and in the coprodeum with folds. In both tissues the epithelium was a monolayer composed of columnar absorptive cells, goblet cells and mitochondria-rich cells. Colon and coprodeum appeared to produce large amounts of mucus. The proctodeal diverticulum was rich in lymphoid tissue arranged into lobuli bursales, and it was concluded that this structure is a modified bursa of Fabricius. The sparse interlobular epithelium of the diverticulum resembled that of colon and coprodeum. Baseline short circuit currents (I(SC)) averaged 114.5+/-13.8 microA/cm(2) in colon, 193.1+/-30.3 microA/cm(2) in coprodeum and 60.4+/-9.1 microA/cm(2) in the diverticulum. Amiloride sensitive Na+-transport amounted to 31, 88 and 38% of the baseline I(SC) in these three tissues, respectively. In all tissues, there was also a modest, theophylline activated chloride secretion response, and ouabain, the Na+/K+-ATPase inhibitor, abolished most of the I(SC). The transepithelial resistance (TER) of the diverticulum was much higher than the other tissues. Upon dissection, urate from ureteral urine was observed in the lower third of the colon and to a lesser extent in the proctodeal diverticulum, indicating retrograde peristalsis of the urine. Thus, unlike the ostrich, there is no sphincter separating colon and coprodeum. On the other hand, a thick mucus layer was seen overlying the mucosa in both colon and coprodeum, as in the ostrich. This may help to prevent osmotic water loss, despite the presence of hyperosmotic urine (up to 800 mOsm) in the lower intestine. Both morphological and electrophysiological data from the rhea support the hypothesis that the rhea lower intestine contributes to post-renal modification of ureteral urine and to the regulation of osmotic balance, as also seen in domestic fowl and other avian species. The proctodeal diverticulum functions mainly as an immune organ, with only limited transport capability.
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2015
Sighvatur S. Árnason; Vibeke S. Elbrønd; Gary Laverty
Dietary salt intake in domestic fowl affects epithelial transport and morphology of the lower intestine (colon and coprodeum). This study investigated lower intestinal morphology and transport activity in two wild bird species with natural diets containing either low or high salt. Tissues from rock ptarmigan (Lagopus mutus) and common murres (Uria aalge) were sampled for histology and electrophysiological analyses. The ptarmigan exists on a low salt diet, while the murre lives on a high protein and high salt diet. The ptarmigan colon and coprodeum had villi/folds and crypts and the epithelium contained absorptive epithelial cells, mitochondria-rich cells and goblet cells. The colon had significant amiloride-inhibitable Isc, 5-15 μA/cm(2), with no glucose-stimulated Isc, and no significant phloridzin inhibition. The coprodeum also had high amiloride-inhibitable Isc. This transport pattern corresponded to that of chickens on low-salt diets. However, the ptarmigan colon also had a significant lysine/leucine-stimulated Isc of 3±1.0 μA/cm(2). The short U. aalge colon was similar to that of ptarmigans, but with no villi. It demonstrated a significant lysine/leucine-stimulated Isc (11±3.5 μA/cm(2)) with no amiloride-inhibitable Isc, similar to the high-salt chicken colon, but with no Na(+)-glucose cotransport. The murre coprodeum was inert to all substances and showed high resistance (1000 Ω·cm(2)), with a multilayered squamous epithelium. Despite some variations possibly associated with dietary protein intake, we conclude that natural high and low salt diets in different avian species are associated with different lower intestinal transport patterns, providing for post-renal adjustments in ion and water excretion.