Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gary Lloyd is active.

Publication


Featured researches published by Gary Lloyd.


Bulletin of the American Meteorological Society | 2015

Cloud Banding and Winds in Intense European Cyclones: Results from the DIAMET Project

G. Vaughan; John Methven; Daniel C. Anderson; Bogdan Antonescu; Laura Baker; T. P. Baker; Sue P. Ballard; Keith N. Bower; P. R. A. Brown; Jeffrey M. Chagnon; T. W. Choularton; J. Chylik; Paul Connolly; Peter A. Cook; Richard Cotton; J. Crosier; Christopher Dearden; J. R. Dorsey; Thomas H. A. Frame; Martin Gallagher; Michael Goodliff; Suzanne L. Gray; Ben Harvey; Peter Knippertz; Humphrey W. Lean; D. Li; Gary Lloyd; O. Martinez Alvarado; John Nicol; Jesse Norris

AbstractThe Diabatic Influences on Mesoscale Structures in Extratropical Storms (DIAMET) project aims to improve forecasts of high-impact weather in extratropical cyclones through field measurements, high-resolution numerical modeling, and improved design of ensemble forecasting and data assimilation systems. This article introduces DIAMET and presents some of the first results. Four field campaigns were conducted by the project, one of which, in late 2011, coincided with an exceptionally stormy period marked by an unusually strong, zonal North Atlantic jet stream and a succession of severe windstorms in northwest Europe. As a result, December 2011 had the highest monthly North Atlantic Oscillation index (2.52) of any December in the last 60 years. Detailed observations of several of these storms were gathered using the U.K.’s BAe 146 research aircraft and extensive ground-based measurements. As an example of the results obtained during the campaign, observations are presented of Extratropical Cyclone Fri...


Monthly Weather Review | 2014

Diabatic Heating and Cooling Rates Derived from In Situ Microphysics Measurements: A Case Study of a Wintertime U.K. Cold Front

Christopher Dearden; Paul Connolly; Gary Lloyd; Jonathan Crosier; Keith N. Bower; T. W. Choularton; G. Vaughan

AbstractIn situ measurements associated with the passage of a kata cold front over the United Kingdom on 29 November 2011 are used to initialize a Lagrangian parcel model for the purpose of calculating rates of diabatic heating and cooling associated with the phase changes of water within the cloud system. The parcel model calculations are performed with both bin-resolved and bulk treatments of microphysical processes. The in situ data from this case study reveal droplet number concentrations up to 100 cm−3, with planar ice crystals detected at cloud top, as well as columnar crystals produced by rime splinter ejection within the prefrontal warm sector. The results show that in terms of magnitude, the most significant rates of diabatic heating and cooling are produced by condensation growth of liquid water within the convective updrafts at the leading edge of the front. The peak temperature tendencies associated with condensation are typically found to be at least an order of magnitude larger than those as...


Meteorological Monographs | 2017

Secondary Ice Production: Current State of the Science and Recommendations for the Future

P. R. Field; R. P. Lawson; P. R. A. Brown; Gary Lloyd; C. D. Westbrook; Dmitri Moisseev; Annette K. Miltenberger; Athanasios Nenes; Alan M. Blyth; T. W. Choularton; Paul Connolly; J. Buehl; Jonathan Crosier; Zhiqiang Cui; Christopher Dearden; Paul J. DeMott; A. Flossmann; A. Heymsfield; Y. Huang; H. Kalesse; Zamin A. Kanji; A. Korolev; A. Kirchgaessner; Sonia Lasher-Trapp; Thomas Leisner; Greg M. McFarquhar; Vaughan T. J. Phillips; Jeffrey L. Stith; Sylvia C. Sullivan

AbstractMeasured ice crystal concentrations in natural clouds at modest supercooling (temperature ~>−10°C) are often orders of magnitude greater than the number concentration of primary ice nucleating particles. Therefore, it has long been proposed that a secondary ice production process must exist that is able to rapidly enhance the number concentration of the ice population following initial primary ice nucleation events. Secondary ice production is important for the prediction of ice crystal concentration and the subsequent evolution of some types of clouds, but the physical basis of the process is not understood and the production rates are not well constrained. In November 2015 an international workshop was held to discuss the current state of the science and future work to constrain and improve our understanding of secondary ice production processes. Examples and recommendations for in situ observations, remote sensing, laboratory investigations, and modeling approaches are presented.


Monthly Weather Review | 2014

Observations of the Origin and Distribution of Ice in Cold, Warm, and Occluded Frontal Systems during the DIAMET Campaign

Gary Lloyd; Christopher Dearden; T. W. Choularton; Jonathan Crosier; Keith N. Bower

AbstractThree case studies in frontal clouds from the Diabatic Influences on Mesoscale Structures in Extratropical Storms (DIAMET) project are described to understand the microphysical development of the mixed phase regions of these clouds. The cases are a kata-type cold front, a wintertime warm front, and a summertime occluded frontal system. The clouds were observed by radar, satellite, and in situ microphysics measurements from the U.K. Facility for Airborne Atmospheric Measurements (FAAM) research aircraft. The kata cold front cloud was shallow with a cloud-top temperature of approximately −13°C. Cloud-top heterogeneous ice nucleation was found to be consistent with predictions by a primary ice nucleation scheme. The other case studies had high cloud tops (< −40°C) and despite no direct cloud-top measurements in these regions, homogeneous ice nucleation would be expected. The maximum ice crystal concentrations and ice water contents in all clouds were observed at temperatures around −5°C. Graupel was ...


Journal of the Atmospheric Sciences | 2017

The Role of Precipitation in Controlling the Transition from Stratocumulus to Cumulus Clouds in a Northern Hemisphere Cold-Air Outbreak

Steven J. Abel; Ian A. Boutle; Kirk Waite; Stuart Fox; Philip R. A. Brown; Richard Cotton; Gary Lloyd; T. W. Choularton; Keith N. Bower

AbstractAircraft observations in a cold-air outbreak to the north of the United Kingdom are used to examine the boundary layer and cloud properties in an overcast mixed-phase stratocumulus cloud layer and across the transition to more broken open-cellular convection. The stratocumulus cloud is primarily composed of liquid drops with small concentrations of ice particles and there is a switch to more glaciated conditions in the shallow cumulus clouds downwind. The rapid change in cloud morphology is accompanied by enhanced precipitation with secondary ice processes becoming active and greater thermodynamic gradients in the subcloud layer. The measurements also show a removal of boundary layer accumulation mode aerosols via precipitation processes across the transition that are similar to those observed in the subtropics in pockets of open cells. Simulations using a convection-permitting (1.5-km grid spacing) regional version of the Met Office Unified Model were able to reproduce many of the salient feature...


Journal of Applied Meteorology and Climatology | 2017

Microphysical Properties of Ice Crystal Precipitation and Surface-Generated Ice Crystals in a High Alpine Environment in Switzerland

Oliver Schlenczek; Jacob P. Fugal; Gary Lloyd; Keith N. Bower; T. W. Choularton; M. Flynn; Jonathan Crosier; Stephan Borrmann

AbstractDuring the Cloud and Aerosol Characterization Experiment (CLACE) 2013 field campaign at the High Altitude Research Station Jungfraujoch, Switzerland, optically thin pure ice clouds and ice crystal precipitation were measured using holographic and other in situ particle instruments. For cloud particles, particle images, positions in space, concentrations, and size distributions were obtained, allowing one to extract size distributions classified by ice crystal habit. Small ice crystals occurring under conditions with a vertically thin cloud layer above and a stratocumulus layer approximately 1 km below exhibit similar properties in size and crystal habits as Antarctic/Arctic diamond dust. Also, ice crystal precipitation stemming from midlevel clouds subsequent to the diamond dust event was observed with a larger fraction of ice crystal aggregates when compared with the diamond dust. In another event, particle size distributions could be derived from mostly irregular ice crystals and aggregates, whi...


Journal of Geophysical Research | 2016

Airborne observations of the microphysical structure of two contrasting cirrus clouds

Sebastian O'Shea; T. W. Choularton; Gary Lloyd; Jonathan Crosier; Keith Bower; Martin Gallagher; Steven J. Abel; Richard Cotton; P. R. A. Brown; Jacob P. Fugal; O Schlenczek; Stephan Borrmann; Juliet C. Pickering

We present detailed airborne in situ measurements of cloud microphysics in two midlatitude cirrus clouds, collected as part of the Cirrus Coupled Cloud-Radiation Experiment (CIRCCREX). A new habit recognition algorithm for sorting cloud particle images using a neural network is introduced. Both flights observed clouds that were related to frontal systems, but one was actively developing whilst the other dissipated as it was sampled. The two clouds showed distinct differences in particle number, habit and size. However a number of common features were observed in the 2DS dataset, including a distinct bimodal size distribution within the higher temperature regions of the clouds. This may result from a combination of local heterogeneous nucleation and large particles sedimenting from aloft. Both clouds had small ice crystals (<100 µm) present at all levels However, this small ice mode is not present in observations from a holographic probe. This raises the possibility that the small ice observed by optical array probes may at least be in part an instrument artefact due to the counting of out-of-focus large particles as small ice. The concentrations of ice crystals were a factor ~10 higher in the actively growing cloud with the stronger updrafts, with a mean concentration of 261 L-1 compared to 29 L-1 in the decaying case. Particles larger than 700 µm were largely absent from the decaying cirrus case. A comparison with ice nucleating particle parameterisations suggests that for the developing case the ice concentrations at the lowest temperatures are best explained by homogenous nucleation.


Journal of Geophysical Research | 2016

Ice residual properties in mixed‐phase clouds at the high‐alpine Jungfraujoch site

Piotr Kupiszewski; Marco Zanatta; S. Mertes; Paul Vochezer; Gary Lloyd; Johannes Schneider; Ludwig Schenk; Martin Schnaiter; Urs Baltensperger; E. Weingartner; M. Gysel

Abstract Ice residual (IR) and total aerosol properties were measured in mixed‐phase clouds (MPCs) at the high‐alpine Jungfraujoch research station. Black carbon (BC) content and coating thickness of BC‐containing particles were determined using single‐particle soot photometers. The ice activated fraction (IAF), derived from a comparison of IR and total aerosol particle size distributions, showed an enrichment of large particles in the IR, with an increase in the IAF from values on the order of 10−4 to 10−3 for 100 nm (diameter) particles to 0.2 to 0.3 for 1 μm (diameter) particles. Nonetheless, due to the high number fraction of submicrometer particles with respect to total particle number, IR size distributions were still dominated by the submicrometer aerosol. A comparison of simultaneously measured number size distributions of BC‐free and BC‐containing IR and total aerosol particles showed depletion of BC by number in the IR, suggesting that BC does not play a significant role in ice nucleation in MPCs at the Jungfraujoch. The potential anthropogenic climate impact of BC via the glaciation effect in MPCs is therefore likely to be negligible at this site and in environments with similar meteorological conditions and a similar aerosol population. The IAF of the BC‐containing particles also increased with total particle size, in a similar manner as for the BC‐free particles, but on a level 1 order of magnitude lower. Furthermore, BC‐containing IR were found to have a thicker coating than the BC‐containing total aerosol, suggesting the importance of atmospheric aging for ice nucleation.


Meteorological Monographs | 2016

Chapter 7. Secondary Ice Production - current state of the science and recommendations for the future

P. R. Field; R. P. Lawson; P. R. A. Brown; Gary Lloyd; C. D. Westbrook; Dmitri Moisseev; Annette K. Miltenberger; Athanasios Nenes; Alan M. Blyth; T. W. Choularton; Paul Connolly; J. Buehl; Jonathan Crosier; Zhiqiang Cui; Christopher Dearden; Paul J. DeMott; A. Flossmann; A. Heymsfield; Y. Huang; H. Kalesse; Zamin A. Kanji; A. Korolev; A. Kirchgaessner; Sonia Lasher-Trapp; Thomas Leisner; Greg M. McFarquhar; Vaughan T. J. Phillips; Jeffrey L. Stith; Sylvia C. Sullivan

AbstractMeasured ice crystal concentrations in natural clouds at modest supercooling (temperature ~>−10°C) are often orders of magnitude greater than the number concentration of primary ice nucleating particles. Therefore, it has long been proposed that a secondary ice production process must exist that is able to rapidly enhance the number concentration of the ice population following initial primary ice nucleation events. Secondary ice production is important for the prediction of ice crystal concentration and the subsequent evolution of some types of clouds, but the physical basis of the process is not understood and the production rates are not well constrained. In November 2015 an international workshop was held to discuss the current state of the science and future work to constrain and improve our understanding of secondary ice production processes. Examples and recommendations for in situ observations, remote sensing, laboratory investigations, and modeling approaches are presented.


Archive | 2017

Secondary Ice Production

P. R. Field; R. P. Lawson; P. R. A. Brown; Gary Lloyd; C. D. Westbrook; Dmitri Moisseev; Annette K. Miltenberger; Athanasios Nenes; Alan M. Blyth; T. W. Choularton; Paul Connolly; J. Buehl; Jonathan Crosier; Zhiqiang Cui; Christopher Dearden; Paul J. DeMott; A. Flossmann; A. Heymsfield; Y. Huang; H. Kalesse; Zamin A. Kanji; A. Korolev; A. Kirchgaessner; Sonia Lasher-Trapp; Thomas Leisner; Greg M. McFarquhar; Vaughan T. J. Phillips; Jeffrey L. Stith; Sylvia C. Sullivan

AbstractMeasured ice crystal concentrations in natural clouds at modest supercooling (temperature ~>−10°C) are often orders of magnitude greater than the number concentration of primary ice nucleating particles. Therefore, it has long been proposed that a secondary ice production process must exist that is able to rapidly enhance the number concentration of the ice population following initial primary ice nucleation events. Secondary ice production is important for the prediction of ice crystal concentration and the subsequent evolution of some types of clouds, but the physical basis of the process is not understood and the production rates are not well constrained. In November 2015 an international workshop was held to discuss the current state of the science and future work to constrain and improve our understanding of secondary ice production processes. Examples and recommendations for in situ observations, remote sensing, laboratory investigations, and modeling approaches are presented.

Collaboration


Dive into the Gary Lloyd's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith N. Bower

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Connolly

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Flynn

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge