Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gary M. Williams is active.

Publication


Featured researches published by Gary M. Williams.


Food and Chemical Toxicology | 1999

Safety assessment of Butylated hydroxyanisole and Butylated hydroxytoluene as antioxidant food additives

Gary M. Williams; Michael J. Iatropoulos; J Whysner

Butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) are widely used antioxidant food additives. They have been extensively studied for potential toxicities. This review details experimental studies of genotoxicity and carcinogenicity which bear on cancer hazard assessment of exposure to humans. We conclude that BHA and BHT pose no cancer hazard and, to the contrary, may be anticarcinogenic at current levels of food additive use.


Critical Reviews in Toxicology | 2007

Aspartame: A Safety Evaluation Based on Current Use Levels, Regulations, and Toxicological and Epidemiological Studies

B. A. Magnuson; G. A. Burdock; John Doull; R. M. Kroes; Gary M. Marsh; M. W. Pariza; Peter S. Spencer; William J. Waddell; R. Walker; Gary M. Williams

Aspartame is a methyl ester of a dipeptide used as a synthetic nonnutritive sweetener in over 90 countries worldwide in over 6000 products. The purpose of this investigation was to review the scientific literature on the absorption and metabolism, the current consumption levels worldwide, the toxicology, and recent epidemiological studies on aspartame. Current use levels of aspartame, even by high users in special subgroups, remains well below the U.S. Food and Drug Administration and European Food Safety Authority established acceptable daily intake levels of 50 and 40 mg/kg bw/day, respectively. Consumption of large doses of aspartame in a single bolus dose will have an effect on some biochemical parameters, including plasma amino acid levels and brain neurotransmitter levels. The rise in plasma levels of phenylalanine and aspartic acid following administration of aspartame at doses less than or equal to 50 mg/kg bw do not exceed those observed postprandially. Acute, subacute and chronic toxicity studies with aspartame, and its decomposition products, conducted in mice, rats, hamsters and dogs have consistently found no adverse effect of aspartame with doses up to at least 4000 mg/kg bw/day. Critical review of all carcinogenicity studies conducted on aspartame found no credible evidence that aspartame is carcinogenic. The data from the extensive investigations into the possibility of neurotoxic effects of aspartame, in general, do not support the hypothesis that aspartame in the human diet will affect nervous system function, learning or behavior. Epidemiological studies on aspartame include several case-control studies and one well-conducted prospective epidemiological study with a large cohort, in which the consumption of aspartame was measured. The studies provide no evidence to support an association between aspartame and cancer in any tissue. The weight of existing evidence is that aspartame is safe at current levels of consumption as a nonnutritive sweetener.


Critical Reviews in Toxicology | 2005

Overview: Using mode of action and life stage information to evaluate the human relevance of animal toxicity data

Jennifer Seed; Ed Carney; Rick A. Corley; Kevin M. Crofton; John M. DeSesso; Paul M. D. Foster; Robert J. Kavlock; Gary L. Kimmel; James E. Klaunig; M. E. (Bette) Meek; R J. Preston; William Slikker; Sonia Tabacova; Gary M. Williams; Jeanette Wiltse; Rt Zoeller; Penelope A. Fenner-Crisp; Dorothy E. Patton

A complete mode of action human relevance analysis—as distinct from mode of action (MOA) analysis alone—depends on robust information on the animal MOA, as well as systematic comparison of the animal data with corresponding information from humans. In November 2003, the International Life Sciences Institutes Risk Science Institute (ILSI RSI) published a 2-year study using animal and human MOA information to generate a four-part Human Relevance Framework (HRF) for systematic and transparent analysis of MOA data and information. Based mainly on non-DNA-reactive carcinogens, the HRF features a “concordance” analysis of MOA information from both animal and human sources, with a focus on determining the appropriate role for each MOA data set in human risk assessment. With MOA information increasingly available for risk assessment purposes, this article illustrates the further applicability of the HRF for reproductive, developmental, neurologic, and renal endpoints, as well as cancer. Based on qualitative and quantitative MOA considerations, the MOA/human relevance analysis also contributes to identifying data needs and issues essential for the dose-response and exposure assessment steps in the overall risk assessment.


In Vitro Cellular & Developmental Biology – Plant | 1982

Primary cultures and the levels of cytochrome p450 in hepatocytes from mouse, rat, hamster, and rabbit liver.

Carol J. Maslansky; Gary M. Williams

SummaryHepatocyte primary cultures (HPC) derived from rat, mouse, hamster, and rabbit liver were characterized for a variety of parameters. The conditions that maximized recovery, attachment, and survival varied between species. Hepatocytes from all four species were capable of attaching in serum-free Williams’ medium E (WME), but optimal attachment as monolayer cultures was achieved for mouse and hamster HPC in medium receiving 1% calf serum supplementation. Hamster hepatocytes required additional cations, whereas rabbit and rat hepatocytes displayed maximal attachment in medium supplemented with 10% calf serum. Survival of mouse and rabbit hepatocytes after 24 h in serum supplemented media was in the order of 90%. Rat and hamster hepatocyte 24 h survival was approximately 70 and 60%, respectively, and was not significantly affected by serum supplementation. Hepatocytes from each species varied in their content of cytochromeP450 at the time of isolation and in the rate of reduction during culture. Mouse and rat hepatocytes demonstrated the most rapid decline in content during the initial 24 h in culture, whereas concentrations in rabbit hepatocytes were virtually unchanged. The rate of decline inP450 concentrations in hamster hepatocytes was intermediate between those displayed by rat and rabbit hepatocytes. These studies have delineated conditions useful for the culture of hepatocytes from four species and have documented the status of an important parameter of their functional capability.


Critical Reviews in Toxicology | 2005

DNA-Reactive Carcinogens: Mode of Action and Human Cancer Hazard

R. Julian Preston; Gary M. Williams

It has been known for decades that mutagenicity plays an important role in the activity of most carcinogens. This mutagenicity can result from direct damage to DNA through a chemical being DNA reactive or from indirect effects, such as through the production of oxygen radicals that then react with DNA. This article presents a set of key events whereby DNA reactivity initiates the process of carcinogenicity that leads to the subsequent mutation induction and enhanced cell proliferation that ultimately results in tumor development. This set of key events for DNA-reactive chemicals was applied to two case studies (aflatoxin B1 and dichloromethane) with the aim of assessing the utility of the Human Relevance Framework (HRF) for this class of chemicals. The conclusions were that the HRF was a viable approach for the use of mechanistic data for DNA-reactive chemicals obtained from both laboratory animals and human cells in vivo and in vitro for predicting human carcinogenicity. In the case of aflatoxin B1, the HRF could be used to predict that carcinogenicity in humans was a likely outcome. In contrast, the HRF predicted that the human carcinogenic potential of dichloromethane was at best less likely than in rodents; this conclusion was supported by the available epidemiological data.


Mutation Research | 2008

Assessment of DNA double-strand breaks and γH2AX induced by the topoisomerase II poisons etoposide and mitoxantrone

Daniel J. Smart; H. Dorota Halicka; Gabriele Schmuck; Frank Traganos; Zbigniew Darzynkiewicz; Gary M. Williams

Double-strand breaks (DSBs) are highly deleterious DNA lesions as they lead to chromosome aberrations and/or apoptosis. The formation of nuclear DSBs triggers phosphorylation of histone H2AX on Ser-139 (defined as gammaH2AX), which participates in the repair of such DNA damage. Our aim was to compare the induction of gammaH2AX in relation to DSBs induced by topoisomerase II (TOPO II) poisons, etoposide (ETOP) and mitoxantrone (MXT), in V79 cells. DSBs were measured by the neutral comet assay, while gammaH2AX was quantified using immunocytochemistry and flow cytometry. Stabilized cleavage complexes (SCCs), lesions thought to be responsible for TOPO II poison-induced genotoxicity, were measured using a complex of enzyme-DNA assay. In the case of ETOP, a no observed adverse effect level (NOAEL) and lowest observed effect level (LOEL) for genotoxicity was determined; gammaH2AX levels paralleled DSBs at all concentrations but significant DNA damage was not detected below 0.5 microg/ml. Furthermore, DNA damage was dependent on the formation of SCCs. In contrast, at low MXT concentrations (0.0001-0.001 microg/ml), induction of gammaH2AX was not accompanied by increases in DSBs. Rather, DSBs were only significantly increased when SCCs were detected. These findings suggest MXT-induced genotoxicity occurred via at least two mechanisms, possibly related to DNA intercalation and/or redox cycling as well as TOPO II inhibition. Our findings also indicate that gammaH2AX can be induced by DNA lesions other than DSBs. In conclusion, gammaH2AX, when measured using immunocytochemical and flow cytometric methods, is a sensitive indicator of DNA damage and may be a useful tool in genetic toxicology screens. ETOP data are consistent with the threshold concept for TOPO II poison-induced genotoxicity and this should be considered in the safety assessment of chemicals displaying an affinity for TOPO II and genotoxic/clastogenic effects.


Food and Chemical Toxicology | 2003

A review of the safety of DHA45-oil

Rob Kroes; Ernst J. Schaefer; Robert A. Squire; Gary M. Williams

Polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA), are natural constituents of the human diet; however, dietary intakes of these fatty acids are below recommended values. The main dietary source of DHA is fatty fish, with lesser amounts provided by shellfish, marine mammals, and organ meats. The addition to traditional food products of refined oils produced by marine microalgae represents potential sources of supplemental dietary DHA. DHA45-oil is manufactured through a multi-step fermentation and refining process using a non-toxigenic and non-pathogenic marine protist. Comprising approximately 45% DHA, and lesser concentrations of palmitic acid and docosapentaenoic acid, DHA45-oil is intended for use in foods as a dietary source of DHA. The safety of DHA45-oil was evaluated in various genotoxicity and acute, subchronic, and reproductive toxicity studies. DHA45-oil produced negative results in genotoxicity assays and demonstrated a low acute oral toxicity in mice and rats. Dietary administration of DHA45-oil to rats in subchronic and one-generation reproductive studies produced results consistent with those observed in oral studies using high concentrations of omega-3 PUFAs from fish or other microalgal-derived oils. The results of these studies, as well as those of various published metabolic, toxicological, and clinical studies with DHA-containing oils, support the safety of DHA45-oil as a potential dietary source of DHA.


Toxicology | 2001

Mechanisms of chemical carcinogenesis and application to human cancer risk assessment.

Gary M. Williams

The distinction between DNA-reactive and epigenetic carcinogens and their roles in oncogenesis is reviewed. An approach to cancer hazard assessment based upon mechanisms is described.


Critical Reviews in Toxicology | 2009

Creating context for the use of DNA adduct data in cancer risk assessment: I. Data organization.

Annie M. Jarabek; Lynn H. Pottenger; Larry S. Andrews; Daniel A. Casciano; Michelle R. Embry; James H. Kim; R. Julian Preston; M. Vijayaraj Reddy; Rita Schoeny; David E. G. Shuker; Julie A. Skare; James A. Swenberg; Gary M. Williams; Errol Zeiger

The assessment of human cancer risk from chemical exposure requires the integration of diverse types of data. Such data involve effects at the cell and tissue levels. This report focuses on the specific utility of one type of data, namely DNA adducts. Emphasis is placed on the appreciation that such DNA adduct data cannot be used in isolation in the risk assessment process but must be used in an integrated fashion with other information. As emerging technologies provide even more sensitive quantitative measurements of DNA adducts, integration that establishes links between DNA adducts and accepted outcome measures becomes critical for risk assessment. The present report proposes an organizational approach for the assessment of DNA adduct data (e.g., type of adduct, frequency, persistence, type of repair process) in concert with other relevant data, such as dosimetry, toxicity, mutagenicity, genotoxicity, and tumor incidence, to inform characterization of the mode of action. DNA adducts are considered biomarkers of exposure, whereas gene mutations and chromosomal alterations are often biomarkers of early biological effects and also can be bioindicators of the carcinogenic process.


Archives of Toxicology | 1999

Diethylnitrosamine exposure-responses for DNA ethylation, hepatocellular proliferation, and initiation of carcinogenesis in rat liver display non-linearities and thresholds

Gary M. Williams; Michael J. Iatropoulos; Alan M. Jeffrey; Feng-Qi Luo; Chung-Xiou Wang; Brian Pittman

Abstract In previous exposure-response studies, we have documented non-linearities for some of the early effects in rat liver of diethylnitrosamine (DEN) and a near no-effect levels for initiation of promotable liver neoplasms at the lowest cumulative exposure of 0.5 mmol/kg body weight; this in spite of formation of DNA adducts and induction of hepatocellular altered foci (HAF). To extend these investigations, in an initiation segment, young male F344 rats were administered four exposures of DEN ranging from a cumulative total of 0.25 mmol, which is half of the previously used low exposure, up to 2 mmol per kg body weight, an effective initiating exposure. These exposures were achieved by once weekly intragastric instillations of one-tenth the total exposures for up to 10 weeks. The initiation segment was followed by a 4 week recovery segment, to allow for remission of acute and subchronic effects of DEN, after which the groups were maintained on 0.06% phenobarbital in the diet for 24 weeks to promote liver tumor development in order to assess initiation. During and after initiation and at the end of recovery, selected groups were studied for several crucial effects involved in hepatocarcinogenicity. The low exposure produced a low-level of DNA ethylation at both 5 and 10 weeks of exposure, measured as O4-ethylthymidine, the most persistent promutagenic ethylation product. At the 5 week interval, the adduct values of the higher exposures were less than proportional to the increment of exposure, suggestive of nonlinearity. Assessment of cellular proliferation by staining for proliferating cell nuclear antigen revealed that the lowest exposure did not increase the replicating fraction of hepatocytes during the initiation (10 weeks) or recovery (4 weeks) segments, whereas in the three higher exposure groups, proliferation was increased in relation to dose and time. Preneoplastic HAF expressing glutathione S-transferase-placental-type were present at low multiplicity in control livers and their multiplicity was increased in all exposure groups by the end of exposure, at which time the increase in the high exposure group was disproportionately greater than the increment of exposure. After phenobarbital administration in the promotion segment, all exposure groups exhibited further HAF increases at 39 weeks. At the end of the promotion segment, no hepatocellular neoplasm was found in 80 controls or in 40 rats in the low exposure group. In the mid-low exposure group, which was the previously studied low exposure, only one adenoma was found, yielding a 3% incidence, while in the two higher exposure groups, 32 and 80% of rats exhibited liver neoplasms, which were increased disproportionately greater than the increments of exposure. Thus, the findings document non-linearities of early DEN effects and at the lowest cumulative dose, a no-effect level (NEL) or threshold for initiation of promotable liver neoplasms. These findings provide a conceptual basis for understanding why low-level exposures to DNA-reactive carcinogens may convey no cancer risk.

Collaboration


Dive into the Gary M. Williams's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian-Dong Duan

New York Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tetyana Kobets

New York Medical College

View shared research outputs
Top Co-Authors

Avatar

R. Julian Preston

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A.G. Renwick

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Philip Carthew

University of Bedfordshire

View shared research outputs
Researchain Logo
Decentralizing Knowledge