Gary R. Freidenberg
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gary R. Freidenberg.
The American Journal of Medicine | 1988
Jerrold M. Olefsky; W. Timothy Garvey; Robert R. Henry; David J. Brillon; Stephan Matthael; Gary R. Freidenberg
Recent studies have led to an enhanced understanding of cellular alterations that may play an important role in the pathophysiology of non-insulin-dependent diabetes mellitus (NIDDM). The insulin receptor links insulin binding at the cell surface to intracellular activation of insulins effects. This transducer function involves the tyrosine kinase property of the beta-subunit of the receptor. It was found that adipocytes from subjects with NIDDM had a 50 to 80 percent reduction in insulin-stimulated receptor kinase activity compared with their non-diabetic counterparts. This defect was relatively specific for the diabetic state since no decrease was observed in insulin-resistant non-diabetic obese subjects. The reduction in kinase activity was accounted for by changes in the ratio of two pools of receptors, both of which bind insulin but only one of which is capable of tyrosine autophosphorylation and subsequent kinase activation; 43 percent of the receptors from non-diabetic subjects were capable of autophosphorylation compared with only 14 percent in the NIDDM group. A major component of cellular insulin resistance in NIDDM involves the glucose transport system. Exposure of cells to insulin normally results in enhanced glucose transport mediated by translocation of glucose transporters from a low-density microsomal intracellular pool to the plasma membrane. It was found that cells from NIDDM subjects had a marked depletion of glucose transporters in both plasma membranes and low-density microsomes, relative to obese non-diabetic control participants. Obese non-diabetic persons had a normal number of plasma membrane transporters but a reduced number of low-density microsome transporters in the basal state compared with lean control volunteers; insulin induced the translocation of relatively fewer transporters from the low-density microsome to the plasma membrane in the obese subgroups. In addition to the diminished number of glucose transporters, cells from both NIDDM and obese subjects had impaired functional activity of glucose carriers since decreased whole-cell glucose transport rates could not be entirely explained by the magnitude of the decrement in the number of plasma membrane transporters. Thus, impaired glucose transport is due to both a numerical and functional defect in glucose transporters. The cellular content of high-density microsomal transporters was the same in lean and obese control volunteers and NIDDM subjects, suggesting that transporter synthesis is normal and that cellular depletion results from increased protein turnover once transporters leave the high-density microsomal subfraction.(ABSTRACT TRUNCATED AT 400 WORDS)
Diabetes | 1990
R Scott Thies; Joseph M Molina; Theodore P. Ciaraldi; Gary R. Freidenberg; Jerrold M. Olefsky
We identified a possible endogenous substrate (pp185) of the insulin-receptor kinase in human adipocytes by treating intact cells with insulin and immunoblotting the cellular extracts with polyclonal antiphosphotyrosine antibody. This 185,000-Mr protein was phosphorylated on tyrosine residues in response to insulin in both rat and human adipocytes. The time course of pp185 phosphorylation at 37°C was rapid and corresponded closely to insulin-receptor autophosphorylation but preceded insulin-stimulated glucose transport. Unlike many growth factor receptors, including the insulin receptor, pp185 was not adsorbed to wheat-germ agglutinin. We found that pp185 phosphorylation occurred at 12°C and that the phosphoprotein was associated with both cytoplasmic and membrane fractions at this temperature. Furthermore, pp185 phosphorylation was induced to the same extent as insulin by vanadate and hydrogen peroxide, compounds previously shown to mimic the biologic effects of insulin. In addition, dose-response analysis of insulin-stimulated glucose transport, receptor autophosphorylation, and pp185 phosphorylation resulted in ED50 values of 0.3, 12, and 12 ng/ml, respectively. These results demonstrate the magnitude of “spare” autophosphorylation and pp185 phosphorylation with respect to glucose transport stimulation in human adipocytes. To determine whether the insulin resistance characteristic of non-insulin-dependent diabetes mellitus (NIDDM) and obesity is associated with a defect in receptor autophosphorylation and/or endogenous substrate phosphorylation, we estimated the extent of β-subunit and pp185 phosphorylation in adipocytes from NIDDM, obese, and healthy subjects. Although the efficiency of coupling between receptor activation and pp185 phosphorylation was normal in obesity and NIDDM, the capacity for insulin-receptor autophosphorylation was ∼50% lower in NIDDM subjects compared with nondiabetic obese or lean subjects. Thus, the absolute level of pp185 phosphorylation in response to insulin stimulation would be lower in adipocytes from NIDDM subjects. We conclude that pp185 is directly phosphorylated by the insulin-receptor kinase in vivo and may serve as a mediating step to the biologic effects of insulin in human adipocytes. Furthermore, the extent of pp185 phosphorylation is compromised in adipocytes from NIDDM subjects and may contribute xto the insulin resistance associated with this disorder.
Regulatory Peptides | 1986
Kim A. Heidenreich; Gary R. Freidenberg; Dianne P. Figlewicz; Patricia R. Gilmore
We examined the structure of receptors for insulin-like growth factor I (IGF-I), insulin, and epidermal growth factor (EGF) in human brain and human placenta using affinity cross-linking procedures and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In human brain, proteins specifically cross-linked to 125I-IGF-I, 125I-insulin, and 125I-EGF had apparent molecular weights of 120,000, 115,000 and 170,000, respectively. In human placenta, proteins cross-linked to 125I-IGF-I and 125I-insulin were 10 kDa larger than the corresponding subunits in brain. The receptor labeled by 125I-EGF in placenta was indistinguishable from the EGF receptor in brain. The size discrepancy of IGF-I receptors in brain and placenta was no longer apparent after removing the carbohydrate moieties of the proteins with endo-beta-N-acetylglucosaminidase F (EndoF). Furthermore, the brain IGF-I receptor was not cleaved by neuraminidase, whereas, the placental IGF-I receptor had increased mobility on SDS gels following neuraminidase treatment. The results indicate that receptors for IGF-I and insulin in human brain are structurally distinct from the corresponding receptors in human placenta, the structural heterogeneity of the receptors involves differences in N-linked glycosylation, particularly the terminal processing steps, and EGF receptors are present in human brain and human placenta but are structurally similar in these tissues. We conclude that there is a selective modification in the glycosylation of receptors for IGF-I and insulin in brain.
Diabetes | 1989
David J. Brillon; Gary R. Freidenberg; Robert R. Henry; Jerrold M. Olefsky
We used anti-insulin-receptor and anti-phosphotyrosine antibodies to elucidate the mechanism of decreased insulin-receptor tyrosine kinase activity observed in subjects with non-insulin-dependent diabetes mellitus (NIDDM). Lectin-purified insulin receptors were labeled with 125I-labeled NAPA-DP-insulin and autophosphorylated in the presence of 500 μM unlabeled ATP. Immunoprecipitation occurred in 43 ± 8% of the autophosphorylated, 125I-labeled receptors from nondiabetic subjects with anti-phosphotyrosine antibodies in contrast to 100% immunoprecipitation with anti-insulin-receptor antibodies. Anti-phosphotyrosine antibodies immunoprecipitated only 14 ± 6% of NIDDM receptors (P < .05 vs. nondiabetic receptors). A significant correlation existed between maximal insulin-stimulated receptor tyrosine kinase activity and the proportion of receptors immunoprecipitated by anti-phosphotyrosine antibodies (r = .76, P < .01). These results suggest that human adipocytes contain two distinct receptor populations, both of which bind insulin but only one of which is capable of insulin-stimulated tyrosine phosphorylation. In nondiabetic subjects, 40–50% of the receptors that bind insulin are capable of insulin-stimulated tyrosine autophosphorylation. The proportion of receptors that bind insulin but are incapable of insulin-stimulated tyrosine autophosphorylation is increased in NIDDM; the magnitude of this increase correlated with the magnitude of the decrease in kinase activity.
Diabetes | 1994
Gary R. Freidenberg; Stephen Suter; Robert R. Henry; John J. Nolan; Donna Reichart; Jerrold M. Olefsky
During the infusion of insulin in vivo, the rate of activation of glucose disposal lags significantly behind the rate of increase in serum insulin levels. To determine whether this delay was related to transcapillary transport of insulin, we determined increments in serum insulin levels, glucose disposal rates (GDR), and insulin receptor (IR) kinase activity measured during continuous infusions of insulin (40 and 120 mU · m−2 · min−1) administered to 8 nondiabetic males; similar studies were done at 1,200 · m−2 · min−1 in 2 of the subjects. Half-maximal insulin levels were achieved at a mean of 4.9 and 7.2 min during the 40 and 120 mU · m−2 · min−1 clamps, respectively, with corresponding half-maximal GDR stimulation at a mean of 59 and 47 min. Unlike the rise in insulin levels, IR kinase activation was much slower with half-maximal activity occurring at ∼40–60 min in the 2 clamps. Thus, the rise in serum insulin levels in each clamp was much faster than the increment in either kinase activity or glucose disposal. Insulin infusion increased both IR kinase and GDR maximally ∼10-fold, with half-maximal stimulation at ∼3,600 and ∼700 pM, indicating spare kinase for glucose disposal. These results demonstrate that the delay in stimulation of glucose disposal by insulin is related to a rate-limiting step between the intravascular space and the cell-surface of skeletal muscle. This may involve delayed transendothelial transport of insulin.
Journal of Pediatric Surgery | 1992
Sioksoan Chan‐Cua; Kenneth Lee Jones; Frank P. Lynch; Gary R. Freidenberg
A 17-year-old boy with insulin-dependent diabetes mellitus developed ketoacidosis and transitory shock. After resolution of his metabolic imbalance, he developed an acute abdomen prompting exploratory surgery. A section of necrotic ileum was found and resected.
Biochemical and Biophysical Research Communications | 1985
Renzo Cordera; Roberto Gherzi; Roberto De Pirro; Luciano Rossetti; Gary R. Freidenberg; Gabriella Andraghetti; Renato Lauro; Luciano Adezati
The immunoglobulin G of a polyclonal antiserum (pIgG) from a patient with insulin resistance and hypoglycemia was tested for its ability to inhibit insulin binding and to affect the autophosphorylation of partially-purified insulin receptors extracted from rat liver membranes. pIgG, when added 4 hr prior to insulin, inhibited subsequent insulin binding by 50% at 30 micrograms added protein; however, insulin previously bound to the receptor could not be displaced by a 4 hr subsequent exposure of up to 70 micrograms pIgG. pIgG, independent of its effect on insulin binding, inhibited both basal and insulin-stimulated autophosphorylation of the insulin receptor in a dose-dependent manner with a half maximal effect at 3.3 to 7 micrograms protein. Furthermore, pIgG also reduced basal autophosphorylation of the EGF receptor. The effect of pIgG to inhibit basal autophosphorylation of insulin and EGF receptors, together with its ability to reduce autophosphorylation of insulin receptors fully occupied by insulin, imply that the effect of pIgG on receptor autophosphorylation is largely independent of its effect on ligand binding. Moreover, these findings suggest that pIgG may inhibit autophosphorylation by acting on domains which are similar in the insulin and EGF receptors.
Biochemical and Biophysical Research Communications | 1986
Renzo Cordera; Roberto Gherzi; Roberto De Pirro; Gabriella Andraghetti; Gary R. Freidenberg; Francesco Minuto; Renato Lauro; G. Giordano; Luciano Adezati
IGF I receptor is a tyrosine kinase capable of phosphorylating the receptor itself and other substrates. A high degree of homology does exist in tyrosine kinase domain among receptors for several polypeptide growth factor receptors and this enzymic activity has been indicated as a possible mediator of biological action. Nevertheless growth factor receptors possess peculiar specificities both in their functions and tissue distribution. A human polyclonal IgG (pIgG), previously characterized as anti insulin receptor antibody, able to inhibit insulin receptor kinase activity, was used to further investigate subunit homologies and differences in antigenicity and functional regulation between IGF I and insulin receptors, IGF I receptor tyrosine kinase was stimulated by a IGF I analog (aIGF I), produced by DNA recombinant technology, pIgG was able to inhibit IGF I receptor kinase activity, thus revealing antigenic homologies between the kinase domains of insulin and IGF I receptors. However the more pronounced inhibition of IGF I receptor-compared with insulin receptor kinase activity by pIgG suggests the existence of different regulatory mechanisms.
The Journal of Clinical Endocrinology and Metabolism | 1994
John J. Nolan; Gary R. Freidenberg; Robert R. Henry; Donna Reichart; Jerrold M. Olefsky
Journal of Biological Chemistry | 1988
H Maegawa; D A McClain; Gary R. Freidenberg; Jerrold M. Olefsky; M Napier; T Lipari; T J Dull; Jun H. Lee; A Ullrich