Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gary Rathbun is active.

Publication


Featured researches published by Gary Rathbun.


Cell | 1992

RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement

Yoichi Shinkai; Gary Rathbun; Kong-Peng Lam; Eugene M. Oltz; Valerie Stewart; Monica Mendelsohn; Jean Charron; Milton Datta; Faith Young; Alan M. Stall; Frederick W. Alt

We have generated mice that carry a germline mutation in which a large portion of the RAG-2 coding region is deleted. Homozygous mutants are viable but fail to produce mature B or T lymphocytes. Very immature lymphoid cells were present in primary lymphoid organs of mutant animals as defined by surface marker analyses and Abelson murine leukemia virus (A-MuLV) transformation assays. However, these cells did not rearrange their immunoglobulin or T cell receptor loci. Lack of V(D)J recombination activity in mutant pre-B cell lines could be restored by introduction of a functional RAG-2 expression vector. Therefore, loss of RAG-2 function in vivo results in total inability to initiate V(D)J rearrangement, leading to a novel severe combined immune deficient (SCID) phenotype. Because the SCID phenotype was the only obvious abnormality detected in RAG-2 mutant mice, RAG-2 function and V(D)J recombinase activity, per se, are not required for development of cells other than lymphocytes.


Immunity | 1995

Defective B cell development and function in Btk-deficient mice

Wasif N. Khan; Frederick W. Alt; Rachel M. Gerstein; Barbara A. Malynn; Irene Larsson; Gary Rathbun; Laurie Davidson; Sussane Müller; Aaron B. Kantor; Leonora A. Herzenberg; Fred S. Rosen; Paschalis Sideras

Mutations in the Brutons tyrosine kinase (Btk) gene have been linked to severe early B cell developmental blocks in human X-linked agammaglobulinemia (XLA), and to milder B cell activation deficiencies in murine X-linked immune deficiency (Xid). To elucidate unequivocally potential Btk functions in mice, we generated mutations in embryonic stem cells, which eliminated the ability to encode Btk pleckstrin homology or kinase domains, and assayed their effects by RAG2-deficient blastocyst complementation or introduction into the germline. Both mutations block expression of Btk protein and lead to reduced numbers of mature conventional B cells, severe B1 cell deficiency, serum IgM and IgG3 deficiency, and defective responses in vitro to various B cell activators and in vivo to immunization with thymus-independent type II antigens. These results prove that lack of Btk function results in an Xid phenotype and further suggest a differential requirement for Btk during the early stages of murine versus human B lymphocyte development.


Cell | 1998

A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis

Yijie Gao; Yi Sun; Karen M. Frank; Pieter Dikkes; Yuko Fujiwara; Katherine J. Seidl; JoAnn Sekiguchi; Gary Rathbun; Wojciech Swat; Jiyang Wang; Roderick T. Bronson; Barbara A. Malynn; Margaret Bryans; Chengming Zhu; Jayanta Chaudhuri; Laurie Davidson; Roger Ferrini; Thomas D. Stamato; Stuart H. Orkin; Michael E. Greenberg; Frederick W. Alt

XRCC4 was identified via a complementation cloning method that employed an ionizing radiation (IR)-sensitive hamster cell line. By gene-targeted mutation, we show that XRCC4 deficiency in primary murine cells causes growth defects, premature senescence, IR sensitivity, and inability to support V(D)J recombination. In mice, XRCC4 deficiency causes late embryonic lethality accompanied by defective lymphogenesis and defective neurogenesis manifested by extensive apoptotic death of newly generated postmitotic neuronal cells. We find similar neuronal developmental defects in embryos that lack DNA ligase IV, an XRCC4-associated protein. Our findings demonstrate that differentiating lymphocytes and neurons strictly require the XRCC4 and DNA ligase IV end-joining proteins and point to the general stage of neuronal development in which these proteins are necessary.


Nature | 1998

Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV

Karen M. Frank; JoAnn Sekiguchi; Katherine J. Seidl; Wojciech Swat; Gary Rathbun; Hwei Ling Cheng; Laurie Davidson; Landy Kangaloo; Frederick W. Alt

The DNA-end-joining reactions used for repair of double-strand breaks in DNA and for V (D)J recombination, the process by which immunoglobulin and T-cell antigen-receptor genes are assembled from multiple gene segments, use common factors. These factors include components of DNA-dependent protein kinase (DNA-PK), namely DNA-PKcs and the Ku heterodimer, Ku70–Ku80, and XRCC4 (ref. 1). The precise function of XRCC4 is unknown, but it interacts with DNA ligase IV. Ligase IV is one of the three known mammalian DNA ligases; however, the in vivo functions of these ligases have not been determined unequivocally. Here we show that inactivation of the ligase IV gene in mice leads to late embryonic lethality. Lymphopoiesis in these mice is blocked and V (D)J joining does not occur. Ligase IV-deficient embryonic fibroblasts also show marked sensitivity to ionizing radiation, growth defects and premature senescence. All of these phenotypic characteristics, except embryonic lethality, resemble those associated with Ku70 and Ku80 deficiencies, indicating that they may result from an impaired end-joining process that involves both Ku subunits and ligase IV. However, Ku-deficient mice are viable, so ligase IV must also be required for processes and/or in cell types in which Ku is dispensable.


Nature | 2000

ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response.

Xiaohua Wu; Velvizhi Ranganathan; David S. Weisman; Walter F. Heine; David N. Ciccone; Ted B. O'Neill; Kindra E. Crick; Kerry A. Pierce; William S. Lane; Gary Rathbun; David M. Livingston; David T. Weaver

Nijmegen breakage syndrome (NBS) is characterized by extreme radiation sensitivity, chromosomal instability and cancer. The phenotypes are similar to those of ataxia telangiectasia mutated (ATM) disease, where there is a deficiency in a protein kinase that is activated by DNA damage, indicating that the Nbs and Atm proteins may participate in common pathways. Here we report that Nbs is specifically phosphorylated in response to γ-radiation, ultraviolet light and exposure to hydroxyurea. Phosphorylation of Nbs mediated by γ-radiation, but not that induced by hydroxyurea or ultraviolet light, was markedly reduced in ATM cells. In vivo, Nbs was phosphorylated on many serine residues, of which S343, S397 and S615 were phosphorylated by Atm in vitro. At least two of these sites were underphosphorylated in ATM cells. Inactivation of these serines by mutation partially abrogated Atm-dependent phosphorylation. Reconstituting NBS cells with a mutant form of Nbs that cannot be phosphorylated at selected, ATM-dependent serine residues led to a specific reduction in clonogenic survival after γ-radiation. Thus, phosphorylation of Nbs by Atm is critical for certain responses of human cells to DNA damage.


Immunity | 1997

Growth retardation and leaky SCID phenotype of Ku70-deficient mice

Yansong Gu; Katherine J. Seidl; Gary Rathbun; Chengming Zhu; John P. Manis; Nienke van der Stoep; Laurie Davidson; Hwei Ling Cheng; JoAnn Sekiguchi; Karen M. Frank; Patricia Stanhope-Baker; Mark S. Schlissel; David Roth; Frederick W. Alt

Ku70, Ku80, and DNA-PKcs are subunits of the DNA-dependent protein kinase (DNA-PK), an enzyme implicated in DNA double-stranded break repair and V(D)J recombination. Our Ku70-deficient mice were about 50% the size of control littermates, and their fibroblasts were ionizing radiation sensitive and displayed premature senescence associated with the accumulation of nondividing cells. Ku70-deficient mice lacked mature B cells or serum immunoglobulin but, unexpectedly, reproducibly developed small populations of thymic and peripheral alpha/beta T lineage cells and had a significant incidence of thymic lymphomas. In association with B and T cell developmental defects, Ku70-deficient cells were severely impaired for joining of V(D)J coding and recombination signal sequences. These unanticipated features of the Ku70-deficient phenotype with respect to lymphocyte development and V(D)J recombination may reflect differential functions of the three DNA-PK components.


Cell | 1998

Impaired Viability and Profound Block in Thymocyte Development in Mice Lacking the Adaptor Protein SLP-76

Vadim Pivniouk; Erdyni Tsitsikov; Paul Swinton; Gary Rathbun; Frederick W. Alt; Raif S. Geha

The adaptor protein SLP-76 is expressed in T lymphocytes and myeloid cells and is a substrate for ZAP-70 and Syk. We generated a SLP-76 null mutation in mice by homologous recombination in embryonic stem cells to evaluate the role of SLP-76 in T cell development and activation. SLP-76-deficient mice exhibited subcutaneous and intraperitoneal hemorrhaging and impaired viability. Analysis of lymphoid cells revealed a profound block in thymic development with absence of double-positive CD4+8+ thymocytes and of peripheral T cells. This block could not be overcome by in vivo treatment with anti-CD3. V-D-J rearrangement of the TCRbeta locus was not obviously affected. B cell development was normal. These results indicate that SLP-76 collects all pre-TCR signals that drive the development and expansion of double-positive thymocytes.


The EMBO Journal | 1992

Surface IgM mediated regulation of RAG gene expression in E mu-N-myc B cell lines.

Ma A; Paul B. Fisher; R. Dildrop; Eugene M. Oltz; Gary Rathbun; P Achacoso; Alan M. Stall; Frederick W. Alt

Transgenic mice carrying either the c‐myc or N‐myc oncogene deregulated by the immunoglobulin heavy chain enhancer element (E mu) develop both pre‐B and B cell lymphomas (E mu‐c‐myc and E mu‐N‐myc lymphomas). We report here that B cell lines derived from these tumors, as well as a line derived from v‐myc retroviral transformation, simultaneously express surface immunoglobulin (a hallmark of mature B cells) as well as a common subset of genes normally restricted to the pre‐B stage of development‐including the recombinase activating genes RAG‐1 and RAG‐2. Continued RAG‐1 and RAG‐2 expression in these lines is associated with VDJ recombinase activity detected with a VDJ recombination substrate. Cross‐linking of the surface immunoglobulin on these lines with an anti‐mu antibody leads to rapid, specific and reversible down‐regulation of RAG‐1 and RAG‐2 gene expression. We also find that a small but significant percentage of normal surface immunoglobulin bearing bone marrow B cells express the RAG‐1 gene. These findings are discussed in the context of their possible implications for the control of specific gene expression during the pre‐B to B cell transition.


Molecular and Cellular Biology | 1993

A V(D)J recombinase-inducible B-cell line : role of transcriptional enhancer elements in directing V(D)J recombination

Eugene M. Oltz; Frederick W. Alt; Weei Chin Lin; Jianzhu Chen; Guillermo E. Taccioli; Stephen Desiderio; Gary Rathbun

Rapid analysis of mechanisms that regulate V(D)J recombination has been hampered by the lack of appropriate cell systems that reproduce aspects of normal prelymphocyte physiology in which the recombinase is activated, accessible antigen receptor loci are rearranged, and rearrangement status is fixed by termination of recombinase expression. To generate such a system, we introduced heat shock-inducible V(D)J recombination-activating genes (RAG) 1 and 2 into a recombinationally inert B-cell line. Heat shock treatment of these cells rapidly induced high levels of RAG transcripts and RAG proteins that were accompanied by a parallel induction of V(D)J recombinase activity, strongly suggesting that RAG proteins have a primary role in V(D)J recombination. Within hours after induction, these cells began to rearrange chromosomally integrated V(D)J recombination substrates but only if the substrates contained an active transcriptional enhancer; substrates lacking an enhancer were not efficiently rearranged. Activities necessary to target integrated substrates for rearrangement were provided by two separate lymphoid-specific transcriptional enhancers, as well as an active nonlymphoid enhancer, unequivocally demonstrating that such elements enhance both transcription and V(D)J recombinational accessibility.


Annals of the New York Academy of Sciences | 1992

Function and Control of Recombination‐Activating Gene Activitya

Frederick W. Alt; Gary Rathbun; Eugene M. Oltz; Guillermo E. Taccioli; Yoichi Shinkai

The RAG-1 and RAG-2 genes synergistically confer VDJ recombinase activity to nonlymphoid cell lines. To unequivocally test RAG gene function, we created lines of mice that lack functional copies of these genes. Consistent with the possibility that RAG gene encode the tissue-specific components of VDJ recombinase, RAG-2-deficient mice are viable but have a severe combined immune deficiency due to inability to initiate VDJ recombination and thereby generate mature lymphocytes. RAG-2-deficient mice have no obvious defect in any tissue or lineage other than lymphocytes, indicating that VDJ recombinase activity and RAG-2-gene function is required only for lymphocyte development. Levels of RAG-1 and RAG-2 expression in primary murine lymphoid tissues and lymphoid bone marrow cultures generally are much higher than those of transformed precursor B-cell lines. Low-level RAG gene expression in permanent cell lines results from a decline during propagation due to outgrowth of cells with lower RAG expression levels. The low and variable level of RAG gene expression in transformed pre-B cell lines correlates with low and variable rates of endogenous VDJ recombination; therefore, such lines are not reliable models for experiments aimed at studying mechanisms that target this activity to particular variable region gene segments. To generate such a system, we introduced RAG genes into B-lineage lines under the control of a heat shock-inducible promoter; heat-shock treatment induces extremely high-level but transient RAG expression accompanied by parallel induction of VDJ recombinase activity. Such cells efficiently rearrange transfected VDJ recombination substrates in a regulated manner that is dependent on the activity of transcriptional control elements associated with the target V gene segments.

Collaboration


Dive into the Gary Rathbun's collaboration.

Top Co-Authors

Avatar

Frederick W. Alt

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Eugene M. Oltz

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Laurie Davidson

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey E. Berman

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Wojciech Swat

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen M. Frank

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge