Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gary Rowley is active.

Publication


Featured researches published by Gary Rowley.


PLOS Pathogens | 2006

H-NS mediates the silencing of laterally acquired genes in bacteria

Sacha Lucchini; Gary Rowley; Martin D. Goldberg; Douglas Hurd; Marcus Harrison; Jay C. D. Hinton

Histone-like nucleoid structuring protein (H-NS) is a modular protein that is associated with the bacterial nucleoid. We used chromatin immunoprecipitation to determine the binding sites of H-NS and RNA polymerase on the Salmonella enterica serovar Typhimurium chromosome. We found that H-NS does not bind to actively transcribed genes and does not co-localize with RNA polymerase. This shows that H-NS principally silences gene expression by restricting the access of RNA polymerase to the DNA. H-NS had previously been shown to preferentially bind to curved DNA in vitro. In fact, at the genomic level we discovered that the level of H-NS binding correlates better with the AT-content of DNA. This is likely to have evolutionary consequences because we show that H-NS binds to many Salmonella genes acquired by lateral gene transfer, and functions as a gene silencer. The removal of H-NS from the cell causes un-controlled expression of several Salmonella pathogenicity islands, and we demonstrate that this has deleterious consequences for bacterial fitness. Our discovery of this novel role for H-NS may have implications for the acquisition of foreign genes by enteric bacteria.


Nature Reviews Microbiology | 2006

Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens

Gary Rowley; Michael P. Spector; Jan Kormanec; Mark Roberts

Despite being nutrient rich, the tissues and fluids of vertebrates are hostile to microorganisms, and most bacteria that attempt to take advantage of this environment are rapidly eliminated by host defences. Pathogens have evolved various means to promote their survival in host tissues, including stress responses that enable bacteria to sense and adapt to adverse conditions. Many different stress responses have been described, some of which are responsive to one or a small number of cues, whereas others are activated by a broad range of insults. The surface layers of pathogenic bacteria directly interface with the host and can bear the brunt of the attack by the host armoury. Several stress systems that respond to perturbations in the microbial cell outside of the cytoplasm have been described and are known collectively as extracytoplasmic or envelope stress responses (ESRs). Here, we review the role of the ESRs in the pathogenesis of Gram-negative bacterial pathogens.


Infection and Immunity | 2004

Role of the two-component regulator CpxAR in the virulence of Salmonella enterica serotype Typhimurium.

Sue Humphreys; Gary Rowley; Andrew Stevenson; Muna F. Anjum; Martin J. Woodward; Stephen Gilbert; Jan Kormanec; Mark Roberts

ABSTRACT The CpxAR (Cpx) two-component regulator controls the expression of genes in response to a variety of environmental cues. The Cpx regulator has been implicated in the virulence of several gram-negative pathogens, although a role for Cpx in vivo has not been demonstrated directly. Here we investigate whether positive or negative control of gene expression by Cpx is important for the pathogenesis of Salmonella enterica serotype Typhimurium. The Cpx signal pathway in serotype Typhimurium was disrupted by insertional inactivation of the cpxA and cpxR genes. We also constitutively activated the Cpx pathway by making an internal in-frame deletion in cpxA (a cpxA* mutation). Activation of the Cpx pathway inhibited induction of the envelope stress response pathway controlled by the alternative sigma factor σE (encoded by rpoE). Conversely, the Cpx pathway was highly up-regulated (>40-fold) in a serotype Typhimurium rpoE mutant. The cpxA* mutation, but not the cpxA or the cpxR mutation, significantly reduced the capacity of serotype Typhimurium to adhere to and invade eucaryotic cells, although intracellular replication was not affected. The cpxA and cpxA* mutations significantly impaired the ability of serotype Typhimurium to grow in vivo in mice. To our knowledge, this is the first demonstration that the Cpx system is important for a bacterial pathogen in vivo.


Microbiology | 2008

A combination of cytochrome c nitrite reductase (NrfA) and flavorubredoxin (NorV) protects Salmonella enterica serovar Typhimurium against killing by NO in anoxic environments.

Paul C. Mills; Gary Rowley; Stephen Spiro; Jay C. D. Hinton; David J. Richardson

The enteric bacterium Salmonella enterica serovar Typhimurium is a pathogen that is highly adapted for both intracellular and extracellular survival in a range of oxic and anoxic environments. The cytotoxic radical nitric oxide (NO) is encountered in many of these environments. Protection against NO may involve reductive detoxification in low-oxygen environments, and three enzymes, flavorubredoxin (NorV), flavohaemoglobin (HmpA) and cytochrome c nitrite reductase (NrfA), have been shown to reduce NO in vitro. In this work we determined the role of these three enzymes in NO detoxification by Salmonella by assessing the effects of all eight possible combinations of norV, hmpA and nrfA single, double and triple mutations. The mutant strains were cultured and exposed to NO following either glucose fermentation (when nitrite reductase activity is low), or anaerobic respiration (when nitrite reductase activity is high). Wild-type cultures were more sensitive to the addition of a pulse of NO when grown under fermentative conditions compared with anaerobic respiratory conditions. Analysis of the mutant strains suggested an important additive role for both NorV and NrfA in both environments, since the norV nrfA mutant could not grow after NO addition. The results also suggested a minor role for HmpA in anaerobic detoxification of NO under the two growth conditions, and a larger role for HmpA in aerobic NO detoxification was confirmed. Activity assays and measurements of NO consumption showed that increased nitrite reductase activity correlates with an elevated capacity for NO reduction by intact cells. Taken together, the results reveal a combined role for NorV and NrfA in NO detoxification under anaerobic conditions, and highlight the influence that growth conditions have on the sensitivity to NO of this pathogenic bacterium.


Infection and Immunity | 2009

Glucose and glycolysis are required for the successful infection of macrophages and mice by Salmonella enterica serovar Typhimurium

Steven D. Bowden; Gary Rowley; Jay C. D. Hinton; Arthur R. Thompson

ABSTRACT Salmonella is a widespread zoonotic enteropathogen that causes gastroenteritis and fatal typhoidal disease in mammals. During systemic infection of mice, Salmonella enterica serovar Typhimurium resides and replicates in macrophages within the “Salmonella-containing vacuole” (SCV). It is surprising that the substrates and metabolic pathways necessary for growth of S. Typhimurium within the SCV of macrophages have not been identified yet. To determine whether S. Typhimurium utilized sugars within the SCV, we constructed a series of S. Typhimurium mutants that lacked genes involved in sugar transport and catabolism and tested them for replication in mice and macrophages. These mutants included a mutant with a mutation in the pfkAB-encoded phosphofructokinase, which catalyzes a key committing step in glycolysis. We discovered that a pfkAB mutant is severely attenuated for replication and survival within RAW 264.7 macrophages. We also show that disruption of the phosphoenolpyruvate:carbohydrate phosphotransferase system by deletion of the ptsHI and crr genes reduces S. Typhimurium replication within RAW 264.7 macrophages. We discovered that mutants unable to catabolize glucose due to deletion of ptsHI, crr, and glk or deletion of ptsG, manXYZ, and glk showed reduced replication within RAW 264.7 macrophages. This study proves that S. Typhimurium requires glycolysis for infection of mice and macrophages and that transport of glucose is required for replication within macrophages.


Journal of Bacteriology | 2006

DNA Adenine Methylation Regulates Virulence Gene Expression in Salmonella enterica Serovar Typhimurium

Roberto Balbontín; Gary Rowley; M. Graciela Pucciarelli; Javier López-Garrido; Yvette Wormstone; Sacha Lucchini; Francisco Portillo; Jay C. D. Hinton; Josep Casadesús

Transcriptomic analyses during growth in Luria-Bertani medium were performed in strain SL1344 of Salmonella enterica serovar Typhimurium and in two isogenic derivatives lacking Dam methylase. More genes were repressed than were activated by Dam methylation (139 versus 37). Key genes that were differentially regulated by Dam methylation were verified independently. The largest classes of Dam-repressed genes included genes belonging to the SOS regulon, as previously described in Escherichia coli, and genes of the SOS-inducible Salmonella prophages ST64B, Gifsy-1, and Fels-2. Dam-dependent virulence-related genes were also identified. Invasion genes in pathogenicity island SPI-1 were activated by Dam methylation, while the fimbrial operon std was repressed by Dam methylation. Certain flagellar genes were repressed by Dam methylation, and Dam(-) mutants of S. enterica showed reduced motility. Altered expression patterns in the absence of Dam methylation were also found for the chemotaxis genes cheR (repressed by Dam) and STM3216 (activated by Dam) and for the Braun lipoprotein gene, lppB (activated by Dam). The requirement for DNA adenine methylation in the regulation of specific virulence genes suggests that certain defects of Salmonella Dam(-) mutants in the mouse model may be caused by altered patterns of gene expression.


Fems Microbiology Letters | 2003

Transcriptional analysis of the rpoE gene encoding extracytoplasmic stress response sigma factor σE in Salmonella enterica serovar Typhimurium

Henrieta Miticka; Gary Rowley; Bronislava Rezuchova; Dagmar Homerova; Sue Humphreys; Jaci Farn; Mark Roberts; Jan Kormanec

The rpoE gene of Salmonella enterica serovar Typhimurium (S. Typhimurium), which encodes the extracytoplasmic stress response sigma factor sigmaE, is critically important for the virulence of S. Typhimurium. We analysed expression of rpoE by wild-type and mutant bacteria grown in different conditions by S1-nuclease mapping using RNA, and using in vivo reporter gene fusions. Three promoters, rpoEp1, rpoEp2 and rpoEp3, were located upstream of the S. Typhimurium rpoE gene. The promoters were differentially expressed during growth and under several stress conditions including cold shock. Expression from the rpoEp3 promoter was absent in an S. Typhimurium rpoE mutant, demonstrating its dependence upon sigmaE. The level of mRNA corresponding to rpoEp3 was also higher in a cpxR mutant, indicating a negative regulation of the promoter by the Cpx system. Using this rpoE-dependent promoter, we optimised a two-plasmid system for identification of promoters recognised by S. Typhimurium sigmaE. The rpoEp3 promoter was active in the Escherichia coli two-plasmid system and has an identical transcription start point as in S. Typhimurium but only after induction of S. Typhimurium rpoE expression.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Copper control of bacterial nitrous oxide emission and its impact on vitamin B12-dependent metabolism

Matthew J. Sullivan; Andrew J. Gates; Corinne Appia-Ayme; Gary Rowley; David J. Richardson

Significance Global atmospheric loading of nitrous oxide (N2O) is on the increase. This stable, long-lived greenhouse gas is a major contributor to radiative forcing by Earth’s atmosphere. Here we describe the genetic regulation of N2O reductase nosZ, encoding the only known N2O-removing enzyme that limits the release of this denitrification intermediate during the bacterial usage of nitrogenous fertilizers. Expression of nosZ is down-regulated in copper-limited environments, leading to net emission of N2O. This cytotoxic N2O emission subsequently modulates expression of genes controlled by vitamin B12 riboswitches, because N2O binds to and inactivates vitamin B12. Cytotoxicity of N2O can be relieved by the addition of vitamin B12. This interaction provides a role for NosZ in N2O-detoxification in nondenitrifying bacteria. Global agricultural emissions of the greenhouse gas nitrous oxide (N2O) have increased by around 20% over the last 100 y, but regulation of these emissions and their impact on bacterial cellular metabolism are poorly understood. Denitrifying bacteria convert nitrate in soils to inert di-nitrogen gas (N2) via N2O and the biochemistry of this process has been studied extensively in Paracoccus denitrificans. Here we demonstrate that expression of the gene encoding the nitrous oxide reductase (NosZ), which converts N2O to N2, is regulated in response to the extracellular copper concentration. We show that elevated levels of N2O released as a consequence of decreased cellular NosZ activity lead to the bacterium switching from vitamin B12-dependent to vitamin B12-independent biosynthetic pathways, through the transcriptional modulation of genes controlled by vitamin B12 riboswitches. This inhibitory effect of N2O can be rescued by addition of exogenous vitamin B12.


Microbiology | 2009

Salmonella enterica Serovar Typhimurium HtrA: regulation of expression and role of the chaperone and protease activities during infection

Claire Lewis; Henrieta Škovierová; Gary Rowley; Bronislava Rezuchova; Dagmar Homerova; Andrew Stevenson; Janice Spencer; Jacinta Farn; Jan Kormanec; Mark Roberts

HtrA is a bifunctional stress protein required by many bacterial pathogens to successfully cause infection. Salmonella enterica serovar Typhimurium (S. Typhimurium) htrA mutants are defective in intramacrophage survival and are highly attenuated in mice. Transcription of htrA in Escherichia coli is governed by a single promoter that is dependent on sigma(E) (RpoE). S. Typhimurium htrA also possesses a sigma(E)-dependent promoter; however, we found that the absence of sigma(E) had little effect on production of HtrA by S. Typhimurium. This suggests that additional promoters control expression of htrA in S. Typhimurium. We identified three S. Typhimurium htrA promoters. Only the most proximal promoter, htrAp3, was sigma(E) dependent. The other promoters, htrAp1 and htrAp2, are probably recognized by the principal sigma factor sigma(70). These two promoters were constitutively expressed but were also slightly induced by heat shock. Thus expression of htrA is different in S. Typhimurium and E. coli. The role of HtrA is to deal with misfolded/damaged proteins in the periplasm. It can do this either by degrading (protease activity) or folding/capturing (chaperone/sequestering, C/S, activity) the aberrant protein. We investigated which of these functions are important to S. Typhimurium in vitro and in vivo. Point or deletion mutants of htrA that encode variant HtrA molecules have been used in previous studies to investigate the role of different regions of HtrA in C/S and protease activity. These htrA variants were placed under the control of the S. Typhimurium htrAP123 promoters and expressed in a S. Typhimurium htrA mutant, GVB1343. Both wild-type HtrA and HtrA (HtrA S210A) lacking protease activity enabled GVB1343 to grow at high temperature (46 degrees C). Both molecules also significantly enhanced the growth/survival of GVB1343 in the liver and spleen of mice during infection. However, expression of wild-type HtrA enabled GVB1343 to grow to much higher levels than expression of HtrA S210A. Thus both the protease and C/S functions of HtrA operate in vivo during infection but the protease function is probably more important. Absence of either PDZ domain completely abolished the ability of HtrA to complement the growth defects of GVB1343 in vitro or in vivo.


Environmental Microbiology Reports | 2012

Nitrous oxide production in soil isolates of nitrate-ammonifying bacteria

Marta A. Stremińska; Heather Felgate; Gary Rowley; David J. Richardson; Elizabeth M. Baggs

Here we provide the first demonstration of the potential for N2 O production by soil-isolated nitrate-ammonifying bacteria under different C and N availabilities, building on characterizations informed from model strains. The potential for soil-isolated Bacillus sp. and Citrobacter sp. to reduce NO3 (-) , and produce NH4 (+) , NO2 (-) and N2 O was examined in batch and continuous (chemostat) cultures under different C-to-NO3 (-) ratios, NO3 (-) -limiting (5 mM) and NO3 (-) -sufficient (22 mM) conditions. C-to-NO3 (-) ratio had a major influence on the products of nitrate ammonification, with NO2 (-) , rather than NH4 (+) , being the major product at low C-to-NO3 (-) ratios in batch cultures. N2 O production was maximum and accompanied by high NO2 (-) production under C-limitation/NO3 -sufficiency conditions in chemostat cultures. In media with lower C-to-NO3 -N ratios (5- and 10-to-1) up to 2.7% or 5.0% of NO3 (-) was reduced to N2 O by Bacillus sp. and Citrobacter sp., respectively, but these reduction efficiencies were only 0.1% or 0.7% at higher C-to-NO3 (-) ratios (25- and 50-to-1). As the highest N2 O production did not occur under the same C-to-NO3 (-) conditions as highest NH4 (+) production we suggest that a re-evaluation may be necessary of the environmental conditions under which nitrate ammonification contributes to N2 O emission from soil.

Collaboration


Dive into the Gary Rowley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Gates

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar

Jan Kormanec

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dagmar Homerova

Slovak Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge