Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gary V. Lopez is active.

Publication


Featured researches published by Gary V. Lopez.


Nature Communications | 2015

Cobalt-centred boron molecular drums with the highest coordination number in the CoB16- cluster.

Ivan A. Popov; Tian Jian; Gary V. Lopez; Alexander I. Boldyrev; Lai-Sheng Wang

The electron deficiency and strong bonding capacity of boron have led to a vast variety of molecular structures in chemistry and materials science. Here we report the observation of highly symmetric cobalt-centered boron drum-like structures of CoB16−, characterized by photoelectron spectroscopy and ab initio calculations. The photoelectron spectra display a relatively simple spectral pattern, suggesting a high symmetry structure. Two nearly degenerate isomers with D8d (I) and C4v (II) symmetries are found computationally to compete for the global minimum. These drum-like structures consist of two B8 rings sandwiching a cobalt atom, which has the highest coordination number known heretofore in chemistry. We show that doping of boron clusters with a transition metal atom induces an earlier two-dimensional to three-dimensional structural transition. The CoB16− cluster is tested as a building block in a triple-decker sandwich, suggesting a promising route for its realization in the solid state.


Angewandte Chemie | 2016

The Planar CoB18− Cluster as a Motif for Metallo‐Borophenes

Wan-Lu Li; Tian Jian; Xin Chen; Teng-Teng Chen; Gary V. Lopez; Jun Li; Lai-Sheng Wang

Monolayer-boron (borophene) has been predicted with various atomic arrangements consisting of a triangular boron lattice with hexagonal vacancies. Its viability was confirmed by the observation of a planar hexagonal B36 cluster with a central six-membered ring. Here we report a planar boron cluster doped with a transition-metal atom in the boron network (CoB18 (-) ), suggesting the prospect of forming stable hetero-borophenes. The CoB18 (-) cluster was characterized by photoelectron spectroscopy and quantum chemistry calculations, showing that its most stable structure is planar with the Co atom as an integral part of a triangular boron lattice. Chemical bonding analyses show that the planar CoB18 (-) is aromatic with ten π-electrons and the Co atom has strong covalent interactions with the surrounding boron atoms. The current result suggests that transition metals can be doped into the planes of borophenes to create metallo-borophenes, opening vast opportunities to design hetero-borophenes with tunable chemical, magnetic, and optical properties.


Journal of Chemical Physics | 2016

Manganese-centered tubular boron cluster – MnB16−: A new class of transition-metal molecules

Tian Jian; Wan-Lu Li; Ivan A. Popov; Gary V. Lopez; Xin Chen; Alexander I. Boldyrev; Jun Li; Lai-Sheng Wang

We report the observation of a manganese-centered tubular boron cluster (MnB16 (-)), which is characterized by photoelectron spectroscopy and ab initio calculations. The relatively simple pattern of the photoelectron spectrum indicates the cluster to be highly symmetric. Ab initio calculations show that MnB16 (-) has a Mn-centered tubular structure with C4v symmetry due to first-order Jahn-Teller effect, while neutral MnB16 reduces to C2v symmetry due to second-order Jahn-Teller effect. In MnB16 (-), two unpaired electrons are observed, one on the Mn 3dz(2) orbital and another on the B16 tube, making it an unusual biradical. Strong covalent bonding is found between the Mn 3d orbitals and the B16 tube, which helps to stabilize the tubular structure. The current result suggests that there may exist a whole class of metal-stabilized tubular boron clusters. These metal-doped boron clusters provide a new bonding modality for transition metals, as well as a new avenue to design boron-based nanomaterials.


Journal of Physical Chemistry A | 2012

What Is the Best DFT Functional for Vibronic Calculations? A Comparison of the Calculated Vibronic Structure of the S1–S0 Transition of Phenylacetylene with Cavity Ringdown Band Intensities

Gary V. Lopez; Chih-Hsuan Chang; Philip M. Johnson; Gregory E. Hall; Trevor J. Sears; Beatrice Markiewicz; Mariana Milan; Alexey Teslja

The sensitivity of vibronic calculations to electronic structure methods and basis sets is explored and compared to accurate relative intensities of the vibrational bands of phenylacetylene in the S(1)(A(1)B(2)) ← S(0)(X(1)A(1)) transition. To provide a better measure of vibrational band intensities, the spectrum was recorded by cavity ringdown absorption spectroscopy up to energies of 2000 cm(-1) above the band origin in a slit jet sample. The sample rotational temperature was estimated to be about 30 K, but the vibrational temperature was higher, permitting the assignment of many vibrational hot bands. The vibronic structure of the electronic transition was simulated using a combination of time-dependent density functional theory (TD-DFT) electronic structure codes, Franck-Condon integral calculations, and a second-order vibronic model developed previously [Johnson, P. M.; Xu, H. F.; Sears, T. J. J. Chem. Phys. 2006, 125, 164331]. The density functional theory (DFT) functionals B3LYP, CAM-B3LYP, and LC-BLYP were explored. The long-range-corrected functionals, CAM-B3LYP and LC-BLYP, produced better values for the equilibrium geometry transition moment, but overemphasized the vibronic coupling for some normal modes, while B3LYP provided better-balanced vibronic coupling but a poor equilibrium transition moment. Enlarging the basis set made very little difference. The cavity ringdown measurements show that earlier intensities derived from resonance-enhanced multiphoton ionization (REMPI) spectra have relative intensity errors.


Journal of Physical Chemistry A | 2016

Probing the Electronic Structure and Chemical Bonding of Mono-Uranium Oxides with Different Oxidation States: UOx– and UOx (x = 3–5)

Jing Su; Wei-Li Li; Gary V. Lopez; Tian Jian; Guo-Jin Cao; Wan-Lu Li; W. H. Eugen Schwarz; Lai-Sheng Wang; Jun Li

Uranium oxide clusters UOx(-) (x = 3-5) were produced by laser vaporization and characterized by photoelectron spectroscopy and quantum theory. Photoelectron spectra were obtained for UOx(-) at various photon energies with well-resolved detachment transitions and vibrational resolution for x = 3 and 4. The electron affinities of UOx were measured as 1.12, 3.60, and 4.02 eV for x = 3, 4, and 5, respectively. The geometric and electronic structures of both the anions and the corresponding neutrals were investigated by quasi-relativistic electron-correlation quantum theory to interpret the photoelectron spectra and to provide insight into their chemical bonding. For UOx clusters with x ≤ 3, the O atoms appear as divalent closed-shell anions around the U atom, which is in various oxidation states from U(II)(fds)(4) in UO to U(VI)(fds)(0) in UO3. For x > 3, there are no longer sufficient valence electrons from the U atom to fill the O(2p) shell, resulting in fractionally charged and multicenter delocalized valence states for the O ligands as well as η(1)- or η(2)-bonded O2 units, with unusual spin couplings and complicated electron correlations in the unfilled poly oxo shell. The present work expands our understanding of both the bonding capacities of actinide elements with extended spdf valence shells as well as the multitude of oxygens charge and bonding states.


Journal of Chemical Physics | 2013

Probing the electronic structures of low oxidation-state uranium fluoride molecules UFx− (x = 2−4)

Wei-Li Li; Han-Shi Hu; Tian Jian; Gary V. Lopez; Jing Su; Jun Li; Lai-Sheng Wang

We report the experimental observation of gaseous UF(x)(-) (x = 2-4) anions, which are investigated using photoelectron spectroscopy and relativistic quantum chemistry. Vibrationally resolved photoelectron spectra are obtained for all three species and the electron affinities of UF(x) (x = 2-4) are measured to be 1.16(3), 1.09(3), and 1.58(3) eV, respectively. Significant multi-electron transitions are observed in the photoelectron spectra of U(5f(3)7s(2))F2(-), as a result of strong electron correlation effects of the two 7s electrons. The U-F symmetric stretching vibrational modes are resolved for the ground states of all UF(x) (x = 2-4) neutrals. Theoretical calculations are performed to qualitatively understand the photoelectron spectra. The entire UF(x)(-) and UF(x) (x = 1-6) series are considered theoretically to examine the trends of U-F bonding and the electron affinities as a function of fluorine coordination. The increased U-F bond lengths and decreased bond orders from UF2(-) to UF4(-) indicate that the U-F bonding becomes weaker as the oxidation state of U increases from I to III.


Journal of Chemical Physics | 2014

High resolution photoelectron imaging of UO− and UO2 − and the low-lying electronic states and vibrational frequencies of UO and UO2

Joseph Czekner; Gary V. Lopez; Lai-Sheng Wang

We report a study of the electronic and vibrational structures of the gaseous uranium monoxide and dioxide molecules using high-resolution photoelectron imaging. Vibrationally resolved photoelectron spectra are obtained for both UO(-) and UO2(-). The spectra for UO2(-) are consistent with, but much better resolved than a recent study using a magnetic-bottle photoelectron analyzer [W. L. Li et al., J. Chem. Phys. 140, 094306 (2014)]. The electron affinity (EA) of UO is reported for the first time as 1.1407(7) eV, whereas a much more accurate EA is obtained for UO2 as 1.1688(6) eV. The symmetric stretching modes for the neutral and anionic ground states, and two neutral excited states for UO2 are observed, as well as the bending mode for the neutral ground state. These vibrational frequencies are consistent with previous experimental and theoretical results. The stretching vibrational modes for the ground state and one excited state are observed for UO. The current results for UO and UO2 are compared with previous theoretical calculations including relativistic effects and spin-orbit coupling. The accurate experimental data reported here provide more stringent tests for future theoretical methods for actinide-containing species.


Journal of Physical Chemistry A | 2013

Temperature-Dependent, Nitrogen-Perturbed Line Shape Measurements in the ν1 + ν3 Band of Acetylene Using a Diode Laser Referenced to a Frequency Comb

Matthew J. Cich; Damien Forthomme; C. P. McRaven; Gary V. Lopez; Gregory E. Hall; Trevor J. Sears; Arlan W. Mantz

The P(11) line of the ν1 + ν3 combination band of C2H2 was studied using an extended cavity diode laser locked to a frequency comb. Line shapes were measured for acetylene and nitrogen gas mixtures at a series of temperatures between 125 and 296 K and total pressures up to 1 atm. The data were fit to two speed-dependent line shape models and the results were compared. Line shape parameters were determined by simultaneously fitting data for all temperatures and pressures in a single multispectrum analysis. Earlier pure acetylene measurements [Cich et al. Appl. Phys. B 2012, 109, 373-38] were incorporated to account for self-perturbation. The resulting parameters reproduce the observed line shapes for the acetylene-nitrogen system over the range of temperatures and pressures studied with average root-mean-square observed-calculated errors of individual line measurement fits of approximately 0.01% of maximum transmission, close to the experimental signal-to-noise ratios. Errors in the pressure measurements constitute the major systematic errors in these measurements, and a statistical method is developed to quantify their effects on the line shape parameters for the present system.


Journal of Chemical Physics | 2014

Probing the electronic and vibrational structure of Au2Al2− and Au2Al2 using photoelectron spectroscopy and high resolution photoelectron imaging

Gary V. Lopez; Joseph Czekner; Tian Jian; Wei-Li Li; Zheng Yang; Lai-Sheng Wang

The electronic and vibrational structures of Au2Al2(-) and Au2Al2 have been investigated using photoelectron spectroscopy (PES), high-resolution photoelectron imaging, and theoretical calculations. Photoelectron spectra taken at high photon energies with a magnetic-bottle apparatus reveal numerous detachment transitions and a large energy gap for the neutral Au2Al2. Vibrationally resolved PE spectra are obtained using high-resolution photoelectron imaging for the ground state detachment transition of Au2Al2(-) at various photon energies (670.55-843.03 nm). An accurate electron affinity of 1.4438(8) eV is obtained for the Au2Al2 neutral cluster, as well as two vibrational frequencies at 57 ± 8 and 305 ± 13 cm(-1). Hot bands transitions yield two vibrational frequencies for Au2Al2(-) at 57 ± 10 and 144 ± 12 cm(-1). The obtained vibrational and electronic structure information is compared with density functional calculations, unequivocally confirming that both Au2Al2(-) and Au2Al2 possess C2v tetrahedral structures.


Journal of Physical Chemistry A | 2010

Vibronic analysis of the S1-S0 transition of phenylacetylene using photoelectron imaging and spectral intensities derived from electronic structure calculations.

Chih-Hsuan Chang; Gary V. Lopez; Trevor J. Sears; Philip M. Johnson

The vibrational structure of the S(1)-S(0) electronic band of phenylacetylene has been recorded by 1 + 1 resonance-enhanced multiphoton ionization, accompanied by slow electron velocity map imaging photoelectron spectroscopy at each resonant vibrational band. Assignments of the S(1) vibrations (up to 2000 cm(-1) above the band origin) are based upon the relative intensities of the vibronic bands calculated by complete second-order vibronic coupling, vibration-rotation (Coriolis and Birss) coupling calculations, and the vibrational structure of the S(1) resonant photoelectron spectra. Although this is an allowed electronic transition, the relative intensities of the a(1) bands are often largely determined by vibronic coupling rather than simple Franck-Condon factors, and second-order coupling is substantial. Nonsymmetric vibrations have intensities obtained through either vibronic or Coriolis coupling, and the calculations have been instrumental in discriminating between alternate possibilities in the assignments. Strong vibronic effects are expected to be present in the spectra of most monosubstituted benzenes, and the calculations presented here show that theoretical treatments based upon electronic structure calculations will generally be useful in the analysis of their spectra.

Collaboration


Dive into the Gary V. Lopez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Li

Tsinghua University

View shared research outputs
Top Co-Authors

Avatar

C. P. McRaven

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chih-Hsuan Chang

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jing Su

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge