Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gaspar Delso is active.

Publication


Featured researches published by Gaspar Delso.


The Journal of Nuclear Medicine | 2011

Performance Measurements of the Siemens mMR Integrated Whole-Body PET/MR Scanner

Gaspar Delso; Sebastian Fürst; Björn Jakoby; Ralf Ladebeck; Carl Ganter; Stephan G. Nekolla; Markus Schwaiger; Sibylle Ziegler

The recently released Biograph mMR is the first commercially available integrated whole-body PET/MR scanner. There are considerable advantages to integrating both modalities in a single scanner that enables truly simultaneous acquisition. However, there are also concerns about the possible degradation of both PET and MR performance in an integrated system. This paper evaluates the performance of the Biograph mMR during independent and simultaneous acquisition of PET and morphologic MR data. Methods: The NEMA NU 2-2007 protocol was followed for studying the PET performance. The following measurements were performed: spatial resolution; scatter fraction, count losses, and randoms; sensitivity; accuracy of the correction for count losses and randoms; and image quality. The quality control manual of the American College of Radiology was followed for studying the MR performance. The following measurements were performed: geometric accuracy, spatial resolution, low-contrast detectability, signal-to-noise ratio, static field (B0) homogeneity, radiofrequency field (B1) homogeneity, and radiofrequency noise. Results: An average spatial resolution of 4.3 mm in full width at half maximum was measured at 1 cm offset from the center of the field of view. The system sensitivity was 15.0 kcps/MBq along the center of the scanner. The scatter fraction was 37.9%, and the peak noise-equivalent count rate was 184 kcps at 23.1 kBq/mL. The maximum absolute value of the relative count rate error due to dead-time losses and randoms was 5.5%. The average residual error in scatter and attenuation correction was 12.1%. All MR parameters were within the tolerances defined by the American College of Radiology. B0 inhomogeneities below 1 ppm were measured in a 120-mm radius. B1 homogeneity and signal-to-noise ratio were equivalent to those of a standard MR scanner. No radiofrequency interference was detected. Conclusion: These results compare favorably with other state-of-the-art PET/CT and PET/MR scanners, indicating that the integration of the PET detectors in the MR scanner and their operation within the magnetic field do not have a perceptible impact on the overall performance. The MR subsystem performs essentially like a standalone system. However, further work is necessary to evaluate the more advanced MR applications, such as functional imaging and spectroscopy.


The Journal of Nuclear Medicine | 2009

Tissue Classification as a Potential Approach for Attenuation Correction in Whole-Body PET/MRI: Evaluation with PET/CT Data

Axel Martinez-Möller; Michael Souvatzoglou; Gaspar Delso; Ralph Bundschuh; Christophe Chefd'hotel; Sibylle Ziegler; Nassir Navab; Markus Schwaiger; Stephan G. Nekolla

Attenuation correction (AC) of whole-body PET data in combined PET/MRI tomographs is expected to be a technical challenge. In this study, a potential solution based on a segmented attenuation map is proposed and evaluated in clinical PET/CT cases. Methods: Segmentation of the attenuation map into 4 classes (background, lungs, fat, and soft tissue) was hypothesized to be sufficient for AC purposes. The segmentation was applied to CT-based attenuation maps from 18F-FDG PET/CT oncologic examinations of 35 patients with 52 18F-FDG–avid lesions in the lungs (n = 15), bones (n = 21), and neck (n = 16). The standardized uptake values (SUVs) of the lesions were determined from PET images reconstructed with nonsegmented and segmented attenuation maps, and an experienced observer interpreted both PET images with no knowledge of the attenuation map status. The feasibility of the method was also evaluated with 2 patients who underwent both PET/CT and MRI. Results: The use of a segmented attenuation map resulted in average SUV changes of 8% ± 3% (mean ± SD) for bone lesions, 4% ± 2% for neck lesions, and 2% ± 3% for lung lesions. The largest SUV change was 13.1%, for a lesion in the pelvic bone. There were no differences in the clinical interpretations made by the experienced observer with both types of attenuation maps. Conclusion: A segmented attenuation map with 4 classes derived from CT data had only a small effect on the SUVs of 18F-FDG–avid lesions and did not change the interpretation for any patient. This approach appears to be practical and valid for MRI-based AC.


Physics in Medicine and Biology | 2010

Evaluation of the attenuation properties of MR equipment for its use in a whole-body PET/MR scanner

Gaspar Delso; Axel Martinez-Möller; Ralph Bundschuh; Ralf Ladebeck; Y Candidus; David Faul; Sibylle Ziegler

The combination of magnetic resonance imaging (MR) and positron emission tomography (PET) scanners can provide a powerful tool for clinical diagnosis and investigation. Among the challenges of developing a combined scanner, obtaining attenuation maps for PET reconstruction is of critical importance. This requires accounting for the presence of MR hardware in the field of view. The attenuation introduced by this hardware cannot be obtained from MR data. We propose the creation of attenuation models of MR hardware, to be registered into the MR-based attenuation map prior to PET reconstruction. Two steps were followed to assess the viability of this method. First, transmission and emission measurements were performed on MR components (RF coils and medical probes). The severity of the artifacts in the reconstructed PET images was evaluated. Secondly, a high-exposure computed tomography (CT) scan was used to obtain a model of a head coil. This model was registered into the attenuation map of PET/CT scans of a uniform phantom fitted with the coil. The resulting PET images were compared to the PET/CT reconstruction in the absence of coils. The artifacts introduced by misregistration of the model were studied. The transmission scans revealed 17% count loss due to the presence of head and neck coils in the field of view. Important sources of attenuation were found in the lock, signal cables and connectors. However, the worst source of attenuation was the casing between both coils. None of the measured medical probes introduced a significant amount of attenuation. Concerning the attenuation model of the head coil, reconstructed PET images with model-based correction were comparable to the reference PET/CT reconstruction. However, inaccuracies greater than 1-2 mm in the axial positioning of the model led to important artifacts. In conclusion, the results show that model-based attenuation correction is possible. Using a high-exposure scan to create an attenuation model of the coils has been proved feasible. However, adequate registration of the model is mandatory.


Medical Physics | 2010

The effect of limited MR field of view in MR/PET attenuation correction

Gaspar Delso; Axel Martinez-Möller; Ralph Bundschuh; Stephan G. Nekolla; Sibylle Ziegler

PURPOSE A critical question in the development of combined MR/PET scanners is whether MR can provide the tissue attenuation data required for PET reconstruction. Unfortunately, MR images are often unable to encompass the entire patient. The resulting truncation in the transverse plane leads to incomplete attenuation maps, causing artifacts in the reconstructed PET image. This article describes the experiments performed to quantify these artifacts. A method to compensate the missing data was evaluated to determine whether software correction is possible or whether additional transmission hardware has to be included in the scanner. METHODS Three studies were made. First, simulated PET data were used to quantify the bias due to an incomplete attenuation map. A set of spherical lesions was simulated in the lungs and mediastinum of a patient. The data were reconstructed with complete and partial attenuation maps and the uptake differences were evaluated. Second, clinical data from PET/CT oncology patients were used. To reproduce the expected conditions in an MR/PET scanner, only patients scanned with the arms resting along the body were considered. These scans were then used to create maps of the reconstruction bias due to field of view (FOV) limitations. Lastly, a PET reconstruction with incomplete attenuation data was evaluated as a means to obtain attenuation information beyond the MR FOV. The patient outline was automatically segmented with a three-dimensional snake algorithm and used to fill the truncated data in the attenuation map. RESULTS Average bias up to 15% and local biases up to 50% were estimated when PET data were reconstructed with incomplete attenuation information. Completing the attenuation map with data extracted from a PET prereconstruction globally reduced these biases to below 10%. This correction proved to be tolerant to inaccuracies in positioning and attenuation values. However, local artifacts up to 20% could still be found near the edges of the MR FOV. CONCLUSIONS MR FOV restrictions can indeed make the reconstructed PET data unacceptable for diagnostic purposes. Biases can be globally compensated by automatic preprocessing of the attenuation map. However, inaccuracies in the correction will result in small artifacts near the periphery of the image that could lead to false-positive findings.


European Journal of Nuclear Medicine and Molecular Imaging | 2009

PET/MRI system design

Gaspar Delso; Sibylle Ziegler

IntroductionThe combination of clinical MRI and PET systems has received increased attention in recent years. In contrast to currently used PET/CT systems, PET/MRI offers not only improved soft-tissue contrast and reduced levels of ionizing radiation, but also a wealth of MRI-specific information such as functional, spectroscopic and diffusion tensor imaging. Combining PET and MRI, however, has proven to be very challenging, due to the detrimental cross-talk effects between the two systems.ObjectiveSignificant progress has been made in the recent years to overcome these difficulties, with several groups reporting PET/MRI prototypes for animal imaging and a clinical insert for neurological applications being demonstrated at the 2007 Annual Meeting of the Society of Nuclear Medicine.DiscussionIn this paper we review different architectures for clinical PET/MRI systems, and their possibilities, limitations and technological obstacles.


Radiology | 2014

Whole-Body Nonenhanced PET/MR versus PET/CT in the Staging and Restaging of Cancers: Preliminary Observations

Martin W. Huellner; Philippe Appenzeller; Felix P. Kuhn; Lars Husmann; Carsten Pietsch; Irene A. Burger; Miguel Porto; Gaspar Delso; Gustav K. von Schulthess; Patrick Veit-Haibach

PURPOSE To assess the diagnostic performance of whole-body non-contrast material-enhanced positron emission tomography (PET)/magnetic resonance (MR) imaging and PET/computed tomography (CT) for staging and restaging of cancers and provide guidance for modality and sequence selection. MATERIALS AND METHODS This study was approved by the institutional review board and national government authorities. One hundred six consecutive patients (median age, 68 years; 46 female and 60 male patients) referred for staging or restaging of oncologic malignancies underwent whole-body imaging with a sequential trimodality PET/CT/MR system. The MR protocol included short inversion time inversion-recovery ( STIR short inversion time inversion-recovery ), Dixon-type liver accelerated volume acquisition ( LAVA liver accelerated volume acquisition ; GE Healthcare, Waukesha, Wis), and respiratory-gated periodically rotated overlapping parallel lines with enhanced reconstruction ( PROPELLER periodically rotated overlapping parallel lines with enhanced reconstruction ; GE Healthcare) sequences. Primary tumors (n = 43), local lymph node metastases (n = 74), and distant metastases (n = 66) were evaluated for conspicuity (scored 0-4), artifacts (scored 0-2), and reader confidence on PET/CT and PET/MR images. Subanalysis for lung lesions (n = 46) was also performed. Relevant incidental findings with both modalities were compared. Interreader agreement was analyzed with intraclass correlation coefficients and κ statistics. Lesion conspicuity, image artifacts, and incidental findings were analyzed with nonparametric tests. RESULTS Primary tumors were less conspicuous on STIR short inversion time inversion-recovery (3.08, P = .016) and LAVA liver accelerated volume acquisition (2.64, P = .002) images than on CT images (3.49), while findings with the PROPELLER periodically rotated overlapping parallel lines with enhanced reconstruction sequence (3.70, P = .436) were comparable to those at CT. In distant metastases, the PROPELLER periodically rotated overlapping parallel lines with enhanced reconstruction sequence (3.84) yielded better results than CT (2.88, P < .001). Subanalysis for lung lesions yielded similar results (primary lung tumors: CT, 3.71; STIR short inversion time inversion-recovery , 3.32 [P = .014]; LAVA liver accelerated volume acquisition , 2.52 [P = .002]; PROPELLER periodically rotated overlapping parallel lines with enhanced reconstruction , 3.64 [P = .546]). Readers classified lesions more confidently with PET/MR than PET/CT. However, PET/CT showed more incidental findings than PET/MR (P = .039), especially in the lung (P < .001). MR images had more artifacts than CT images. CONCLUSION PET/MR performs comparably to PET/CT in whole-body oncology and neoplastic lung disease, with the use of appropriate sequences. Further studies are needed to define regionalized PET/MR protocols with sequences tailored to specific tumor entities.


Magnetic Resonance in Medicine | 2016

Zero TE MR bone imaging in the head

Florian Wiesinger; Laura I. Sacolick; Anne Menini; Sandeep Suryanarayana Kaushik; Sangtae Ahn; Patrick Veit-Haibach; Gaspar Delso; Dattesh Shanbhag

To investigate proton density (PD)‐weighted zero TE (ZT) imaging for morphological depiction and segmentation of cranial bone structures.


nuclear science symposium and medical imaging conference | 2012

Comparison of 4-class and continuous fat/water methods for whole-body, MR-based PET attenuation correction

Scott D. Wollenweber; Sonal Ambwani; Albert Henry Roger Lonn; Dattesh Shanbhag; Sheshadri Thiruvenkadam; Sandeep Suryanarayana Kaushik; Rakesh Mullick; Florian Wiesinger; Hua Qian; Gaspar Delso

The goal of this study was to compare two approaches for MR-based PET patient attenuation correction (AC) in whole-body FDG-PET imaging using a tri-modality PET/CT & MR setup. Sixteen clinical whole-body FDG patients were included in this study. Mean standard uptake values (SUV) were measured for liver and lung volumes-of-interest for comparison. Maximum SUV values were measured in 18 FDGavid features in ten of the patients. The AC methods compared to gold-standard CT-based AC were segmentation of the CT (air, lung, fat, water), MR image segmentation with 4 tissue classes (air, lung, fat, water) and segmentation with air, lung and a continuous fat/water method. Results: The magnitude of uptake value differences induced by CT-based image segmentation were similar but lower on average than those found using the MRderived AC methods. The average liver SUV difference with that found using CTAC was 1.3%, 10.4% and 5.7% for 4-class segmented CT, 4-class MRAC and continuous fat/water MRAC methods, respectively. The average FDG-avid feature SUV max difference was -0.5%,1.7% and -1.6% for 4-class segmented CT, 4-class MRAC and continuous fat/water MRAC methods, respectively. Conclusion: The results demonstrated that both 4class and continuous fat/water AC methods provided adequate quantitation in the body, and that the continuous fat/water method was within 5.7% on average for SUV mean in liver and 1.6% on average for SUV max for FDG-avid features.


Medical Physics | 2016

NEMA NU 2‐2012 performance studies for the SiPM‐based ToF‐PET component of the GE SIGNA PET/MR system

Alexander M. Grant; Timothy W. Deller; Mohammad Mehdi Khalighi; Sri Harsha Maramraju; Gaspar Delso; Craig S. Levin

PURPOSE The GE SIGNA PET/MR is a new whole body integrated time-of-flight (ToF)-PET/MR scanner from GE Healthcare. The system is capable of simultaneous PET and MR image acquisition with sub-400 ps coincidence time resolution. Simultaneous PET/MR holds great potential as a method of interrogating molecular, functional, and anatomical parameters in clinical disease in one study. Despite the complementary imaging capabilities of PET and MRI, their respective hardware tends to be incompatible due to mutual interference. In this work, the GE SIGNA PET/MR is evaluated in terms of PET performance and the potential effects of interference from MRI operation. METHODS The NEMA NU 2-2012 protocol was followed to measure PET performance parameters including spatial resolution, noise equivalent count rate, sensitivity, accuracy, and image quality. Each of these tests was performed both with the MR subsystem idle and with continuous MR pulsing for the duration of the PET data acquisition. Most measurements were repeated at three separate test sites where the system is installed. RESULTS The scanner has achieved an average of 4.4, 4.1, and 5.3 mm full width at half maximum radial, tangential, and axial spatial resolutions, respectively, at 1 cm from the transaxial FOV center. The peak noise equivalent count rate (NECR) of 218 kcps and a scatter fraction of 43.6% are reached at an activity concentration of 17.8 kBq/ml. Sensitivity at the center position is 23.3 cps/kBq. The maximum relative slice count rate error below peak NECR was 3.3%, and the residual error from attenuation and scatter corrections was 3.6%. Continuous MR pulsing had either no effect or a minor effect on each measurement. CONCLUSIONS Performance measurements of the ToF-PET whole body GE SIGNA PET/MR system indicate that it is a promising new simultaneous imaging platform.


The Journal of Nuclear Medicine | 2014

Anatomic Evaluation of 3-Dimensional Ultrashort-Echo-Time Bone Maps for PET/MR Attenuation Correction

Gaspar Delso; Michael Carl; Florian Wiesinger; Laura I. Sacolick; Miguel Porto; Martin Hüllner; Andreas Boss; Patrick Veit-Haibach

Ultrashort-echo-time (UTE) sequences have been proposed in the past for MR-based attenuation correction of PET data, because of their ability to image cortical bone. In the present work we assessed the limitations of dual-echo UTE imaging for bone segmentation in head and neck imaging. Sequentially acquired MR and PET/CT clinical data were used for this purpose. Methods: Twenty patients referred for a clinical oncology examination were scanned using a trimodality setup. Among the MR sequences, a dual-echo UTE acquisition of the head was acquired and used to create tissue R2 maps. The different undesired structures present in these maps were identified by an experienced radiologist. Global and local measurements of the overlap between R2-based and CT-based bone masks were computed. Results: UTE R2 maps displayed a nonfunctional relation with CT data. The obtained bone masks showed acceptable overlap with the corresponding CT data, in the case of the skull itself (e.g., 47% mismatch for the parietal region), with decreased performance in the base of the skull and in the neck (e.g., 78% for the maxillary region). Unwanted structures were detected, both anatomic (e.g., sternocleidomastoid, temporal, and masseter muscles) and artifactual (e.g., dental implants and air–tissue interfaces). Conclusion: It is indeed possible to estimate the anatomic location of bone tissue using UTE sequences. However, using pure parametric maps for attenuation correction may lead to bias close to certain anatomic structures and areas of high magnetic field inhomogeneity. More sophisticated approaches are necessary to compensate for these effects.

Collaboration


Dive into the Gaspar Delso's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge