Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gaston K. Mazandu is active.

Publication


Featured researches published by Gaston K. Mazandu.


International Journal of Molecular Sciences | 2012

Function Prediction and Analysis of Mycobacterium tuberculosis Hypothetical Proteins

Gaston K. Mazandu; Nicola Mulder

High-throughput biology technologies have yielded complete genome sequences and functional genomics data for several organisms, including crucial microbial pathogens of humans, animals and plants. However, up to 50% of genes within a genome are often labeled “unknown”, “uncharacterized” or “hypothetical”, limiting our understanding of virulence and pathogenicity of these organisms. Even though biological functions of proteins encoded by these genes are not known, many of them have been predicted to be involved in key processes in these organisms. In particular, for Mycobacterium tuberculosis, some of these “hypothetical” proteins, for example those belonging to the Pro-Glu or Pro-Pro-Glu (PE/PPE) family, have been suspected to play a crucial role in the intracellular lifestyle of this pathogen, and may contribute to its survival in different environments. We have generated a functional interaction network for Mycobacterium tuberculosis proteins and used this to predict functions for many of its hypothetical proteins. Here we performed functional enrichment analysis of these proteins based on their predicted biological functions to identify annotations that are statistically relevant, and analysed and compared network properties of hypothetical proteins to the known proteins. From the statistically significant annotations and network information, we have tried to derive biologically meaningful annotations related to infection and disease. This quantitative analysis provides an overview of the functional contributions of Mycobacterium tuberculosis “hypothetical” proteins to many basic cellular functions, including its adaptability in the host system and its ability to evade the host immune response.


Advances in Bioinformatics | 2012

A topology-based metric for measuring term similarity in the gene ontology.

Gaston K. Mazandu; Nicola Mulder

The wide coverage and biological relevance of the Gene Ontology (GO), confirmed through its successful use in protein function prediction, have led to the growth in its popularity. In order to exploit the extent of biological knowledge that GO offers in describing genes or groups of genes, there is a need for an efficient, scalable similarity measure for GO terms and GO-annotated proteins. While several GO similarity measures exist, none adequately addresses all issues surrounding the design and usage of the ontology. We introduce a new metric for measuring the distance between two GO terms using the intrinsic topology of the GO-DAG, thus enabling the measurement of functional similarities between proteins based on their GO annotations. We assess the performance of this metric using a ROC analysis on human protein-protein interaction datasets and correlation coefficient analysis on the selected set of protein pairs from the CESSM online tool. This metric achieves good performance compared to the existing annotation-based GO measures. We used this new metric to assess functional similarity between orthologues, and show that it is effective at determining whether orthologues are annotated with similar functions and identifying cases where annotation is inconsistent between orthologues.


BioMed Research International | 2013

Information Content-Based Gene Ontology Semantic Similarity Approaches: Toward a Unified Framework Theory

Gaston K. Mazandu; Nicola Mulder

Several approaches have been proposed for computing term information content (IC) and semantic similarity scores within the gene ontology (GO) directed acyclic graph (DAG). These approaches contributed to improving protein analyses at the functional level. Considering the recent proliferation of these approaches, a unified theory in a well-defined mathematical framework is necessary in order to provide a theoretical basis for validating these approaches. We review the existing IC-based ontological similarity approaches developed in the context of biomedical and bioinformatics fields to propose a general framework and unified description of all these measures. We have conducted an experimental evaluation to assess the impact of IC approaches, different normalization models, and correction factors on the performance of a functional similarity metric. Results reveal that considering only parents or only children of terms when assessing information content or semantic similarity scores negatively impacts the approach under consideration. This study produces a unified framework for current and future GO semantic similarity measures and provides theoretical basics for comparing different approaches. The experimental evaluation of different approaches based on different term information content models paves the way towards a solution to the issue of scoring a terms specificity in the GO DAG.


BMC Bioinformatics | 2013

DaGO-Fun: tool for Gene Ontology-based functional analysis using term information content measures

Gaston K. Mazandu; Nicola Mulder

BackgroundThe use of Gene Ontology (GO) data in protein analyses have largely contributed to the improved outcomes of these analyses. Several GO semantic similarity measures have been proposed in recent years and provide tools that allow the integration of biological knowledge embedded in the GO structure into different biological analyses. There is a need for a unified tool that provides the scientific community with the opportunity to explore these different GO similarity measure approaches and their biological applications.ResultsWe have developed DaGO-Fun, an online tool available at http://web.cbio.uct.ac.za/ITGOM, which incorporates many different GO similarity measures for exploring, analyzing and comparing GO terms and proteins within the context of GO. It uses GO data and UniProt proteins with their GO annotations as provided by the Gene Ontology Annotation (GOA) project to precompute GO term information content (IC), enabling rapid response to user queries.ConclusionsThe DaGO-Fun online tool presents the advantage of integrating all the relevant IC-based GO similarity measures, including topology- and annotation-based approaches to facilitate effective exploration of these measures, thus enabling users to choose the most relevant approach for their application. Furthermore, this tool includes several biological applications related to GO semantic similarity scores, including the retrieval of genes based on their GO annotations, the clustering of functionally related genes within a set, and term enrichment analysis.


PLOS ONE | 2013

Predicting and Analyzing Interactions between Mycobacterium tuberculosis and Its Human Host

Gaston K. Mazandu; Nicola Mulder

The outcome of infection by Mycobacterium tuberculosis (Mtb) depends greatly on how the host responds to the bacteria and how the bacteria manipulates the host, which is facilitated by protein–protein interactions. Thus, to understand this process, there is a need for elucidating protein interactions between human and Mtb, which may enable us to characterize specific molecular mechanisms allowing the bacteria to persist and survive under different environmental conditions. In this work, we used the interologs method based on experimentally verified intra-species and inter-species interactions to predict human-Mtb functional interactions. These interactions were further filtered using known human-Mtb interactions and genes that are differentially expressed during infection, producing 190 interactions. Further analysis of the subcellular location of proteins involved in these human-Mtb interactions confirms feasibility of these interactions. We also conducted functional analysis of human and Mtb proteins involved in these interactions, checking whether these proteins play a role in infection and/or disease, and enriching Mtb proteins in a previously predicted list of drug targets. We found that the biological processes of the human interacting proteins suggested their involvement in apoptosis and production of nitric oxide, whereas those of the Mtb interacting proteins were relevant to the intracellular environment of Mtb in the host. Mapping these proteins onto KEGG pathways highlighted proteins belonging to the tuberculosis pathway and also suggested that Mtb proteins might use the host to acquire nutrients, which is in agreement with the intracellular lifestyle of Mtb. This indicates that these interactions can shed light on the interplay between Mtb and its human host and thus, contribute to the process of designing novel drugs with new biological mechanisms of action.


Advances in Bioinformatics | 2011

Generation and Analysis of Large-Scale Data-Driven Mycobacterium tuberculosis Functional Networks for Drug Target Identification

Gaston K. Mazandu; Nicola Mulder

Technological developments in large-scale biological experiments, coupled with bioinformatics tools, have opened the doors to computational approaches for the global analysis of whole genomes. This has provided the opportunity to look at genes within their context in the cell. The integration of vast amounts of data generated by these technologies provides a strategy for identifying potential drug targets within microbial pathogens, the causative agents of infectious diseases. As proteins are druggable targets, functional interaction networks between proteins are used to identify proteins essential to the survival, growth, and virulence of these microbial pathogens. Here we have integrated functional genomics data to generate functional interaction networks between Mycobacterium tuberculosis proteins and carried out computational analyses to dissect the functional interaction network produced for identifying drug targets using network topological properties. This study has provided the opportunity to expand the range of potential drug targets and to move towards optimal target-based strategies.


PLOS ONE | 2011

Scoring Protein Relationships in Functional Interaction Networks Predicted from Sequence Data

Gaston K. Mazandu; Nicola Mulder

The abundance of diverse biological data from various sources constitutes a rich source of knowledge, which has the power to advance our understanding of organisms. This requires computational methods in order to integrate and exploit these data effectively and elucidate local and genome wide functional connections between protein pairs, thus enabling functional inferences for uncharacterized proteins. These biological data are primarily in the form of sequences, which determine functions, although functional properties of a protein can often be predicted from just the domains it contains. Thus, protein sequences and domains can be used to predict protein pair-wise functional relationships, and thus contribute to the function prediction process of uncharacterized proteins in order to ensure that knowledge is gained from sequencing efforts. In this work, we introduce information-theoretic based approaches to score protein-protein functional interaction pairs predicted from protein sequence similarity and conserved protein signature matches. The proposed schemes are effective for data-driven scoring of connections between protein pairs. We applied these schemes to the Mycobacterium tuberculosis proteome to produce a homology-based functional network of the organism with a high confidence and coverage. We use the network for predicting functions of uncharacterised proteins. Availability Protein pair-wise functional relationship scores for Mycobacterium tuberculosis strain CDC1551 sequence data and python scripts to compute these scores are available at http://web.cbio.uct.ac.za/~gmazandu/scoringschemes.


Computational and structural biotechnology journal | 2014

Using biological networks to improve our understanding of infectious diseases

Nicola Mulder; Richard O Akinola; Gaston K. Mazandu

Infectious diseases are the leading cause of death, particularly in developing countries. Although many drugs are available for treating the most common infectious diseases, in many cases the mechanism of action of these drugs or even their targets in the pathogen remain unknown. In addition, the key factors or processes in pathogens that facilitate infection and disease progression are often not well understood. Since proteins do not work in isolation, understanding biological systems requires a better understanding of the interconnectivity between proteins in different pathways and processes, which includes both physical and other functional interactions. Such biological networks can be generated within organisms or between organisms sharing a common environment using experimental data and computational predictions. Though different data sources provide different levels of accuracy, confidence in interactions can be measured using interaction scores. Connections between interacting proteins in biological networks can be represented as graphs and edges, and thus studied using existing algorithms and tools from graph theory. There are many different applications of biological networks, and here we discuss three such applications, specifically applied to the infectious disease tuberculosis, with its causative agent Mycobacterium tuberculosis and host, Homo sapiens. The applications include the use of the networks for function prediction, comparison of networks for evolutionary studies, and the generation and use of host–pathogen interaction networks.


BMC Bioinformatics | 2014

A web-based protein interaction network visualizer

Gustavo A. Salazar; Ayton Meintjes; Gaston K. Mazandu; Richard O Akinola; Nicola Mulder

BackgroundInteraction between proteins is one of the most important mechanisms in the execution of cellular functions. The study of these interactions has provided insight into the functioning of an organism’s processes. As of October 2013, Homo sapiens had over 170000 Protein-Protein interactions (PPI) registered in the Interologous Interaction Database, which is only one of the many public resources where protein interactions can be accessed. These numbers exemplify the volume of data that research on the topic has generated. Visualization of large data sets is a well known strategy to make sense of information, and protein interaction data is no exception. There are several tools that allow the exploration of this data, providing different methods to visualize protein network interactions. However, there is still no native web tool that allows this data to be explored interactively online.ResultsGiven the advances that web technologies have made recently it is time to bring these interactive views to the web to provide an easily accessible forum to visualize PPI. We have created a Web-based Protein Interaction Network Visualizer: PINV, an open source, native web application that facilitates the visualization of protein interactions (http://biosual.cbio.uct.ac.za/pinv.html). We developed PINV as a set of components that follow the protocol defined in BioJS and use the D3 library to create the graphic layouts. We demonstrate the use of PINV with multi-organism interaction networks for a predicted target from Mycobacterium tuberculosis, its interacting partners and its orthologs.ConclusionsThe resultant tool provides an attractive view of complex, fully interactive networks with components that allow the querying, filtering and manipulation of the visible subset. Moreover, as a web resource, PINV simplifies sharing and publishing, activities which are vital in today’s research collaborative environments. The source code is freely available for download at https://github.com/4ndr01d3/biosual.


Infection, Genetics and Evolution | 2012

Using the underlying biological organization of the Mycobacterium tuberculosis functional network for protein function prediction

Gaston K. Mazandu; Nicola Mulder

Despite ever-increasing amounts of sequence and functional genomics data, there is still a deficiency of functional annotation for many newly sequenced proteins. For Mycobacterium tuberculosis (MTB), more than half of its genome is still uncharacterized, which hampers the search for new drug targets within the bacterial pathogen and limits our understanding of its pathogenicity. As for many other genomes, the annotations of proteins in the MTB proteome were generally inferred from sequence homology, which is effective but its applicability has limitations. We have carried out large-scale biological data integration to produce an MTB protein functional interaction network. Protein functional relationships were extracted from the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and additional functional interactions from microarray, sequence and protein signature data. The confidence level of protein relationships in the additional functional interaction data was evaluated using a dynamic data-driven scoring system. This functional network has been used to predict functions of uncharacterized proteins using Gene Ontology (GO) terms, and the semantic similarity between these terms measured using a state-of-the-art GO similarity metric. To achieve better trade-off between improvement of quality, genomic coverage and scalability, this prediction is done by observing the key principles driving the biological organization of the functional network. This study yields a new functionally characterized MTB strain CDC1551 proteome, consisting of 3804 and 3698 proteins out of 4195 with annotations in terms of the biological process and molecular function ontologies, respectively. These data can contribute to research into the Development of effective anti-tubercular drugs with novel biological mechanisms of action.

Collaboration


Dive into the Gaston K. Mazandu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ephifania Geza

African Institute for Mathematical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth Opap

University of Cape Town

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge