Gastone Ciuti
Sant'Anna School of Advanced Studies
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gastone Ciuti.
IEEE Reviews in Biomedical Engineering | 2011
Gastone Ciuti; Arianna Menciassi; Paolo Dario
Wireless capsule endoscopy (WCE) can be considered an example of disruptive technology since it represents an appealing alternative to traditional diagnostic techniques. This technology enables inspection of the digestive system without discomfort or need for sedation, thus preventing the risks of conventional endoscopy, and has the potential of encouraging patients to undergo gastrointestinal (GI) tract examinations. However, currently available clinical products are passive devices whose locomotion is driven by natural peristalsis, with the drawback of failing to capture the images of important GI tract regions, since the doctor is unable to control the capsules motion and orientation. To address these limitations, many research groups are working to develop active locomotion devices that allow capsule endoscopy to be performed in a totally controlled manner. This would enable the doctor to steer the capsule towards interesting pathological areas and to accomplish medical tasks. This review presents a research update on WCE and describes the state of the art of the basic modules of current swallowable devices, together with a perspective on WCE potential for screening, diagnostic, and therapeutic endoscopic procedures.
Robotica | 2010
Gastone Ciuti; Pietro Valdastri; Arianna Menciassi; Paolo Dario
This paper describes a novel approach to capsular endoscopy that takes advantage of active magnetic locomotion in the gastrointestinal tract guided by an anthropomorphic robotic arm. Simulations were performed to select the design parameters allowing an effective and reliable magnetic link between the robot end-effector (endowed with a permanent magnet) and the capsular device (endowed with small permanent magnets). In order to actively monitor the robotic endoluminal system and to efficiently perform diagnostic and surgical medical procedures, a feedback control based on inertial sensing was also implemented. The proposed platform demonstrated to be a reliable solution to move and steer a capsular device in a slightly insufflated gastrointestinal lumen.
Endoscopy | 2009
Gastone Ciuti; Regina Donlin; Pietro Valdastri; Alberto Arezzo; Arianna Menciassi; Mario Morino; Paolo Dario
BACKGROUND AND STUDY AIMS Capsular endoscopy holds promise for the improved inspection of the gastrointestinal tract. However, this technique is limited by a lack of controlled capsule locomotion. Magnetic steering has been proposed by the main worldwide suppliers of commercial capsular endoscopes and by several research groups. The present study evaluates and discusses how robotics may improve diagnostic outcomes compared with manual magnetic steering of an endoscopic capsule. MATERIALS AND METHODS An endoscopic capsule prototype incorporating permanent magnets was deployed in an ex vivo colon segment. An operator controlled the external driving magnet manually or with robotic assistance. The capsule was maneuvered through the colon, visualizing and contacting targets installed on the colon wall. Procedure completion time and number of targets reached were collected for each trial to quantitatively compare manual versus robotic magnetic steering ( T-test analysis with P = 0.01). Then, through a set of in vivo animal trials, the efficacy of both approaches was qualitatively assessed. RESULTS In ex vivo conditions, robotic-assisted control was superior to manual control in terms of targets reached (87 % +/- 13 % vs 37 % +/- 14 %). Manual steering demonstrated faster trial completion time (201 +/- 24 seconds vs 423 +/- 48 seconds). Under in vivo conditions, the robotic approach confirmed higher precision of movement and better reliability compared with manual control. CONCLUSIONS Robotic control for magnetic steering of a capsular endoscope was demonstrated to be more precise and reliable than manual operation. Validation of the proposed robotic system paves the way for automation of capsular endoscopy and advanced endoscopic techniques.
Measurement Science and Technology | 2012
Marco Salerno; Gastone Ciuti; Gioia Lucarini; Rocco Rizzo; Pietro Valdastri; Arianna Menciassi; Alberto Landi; Paolo Dario
Recent achievements in active capsule endoscopy have allowed controlled inspection of the bowel by magnetic guidance. Capsule localization represents an important enabling technology for such kinds of platforms. In this paper, the authors present a localization method, applied as first step in time-discrete capsule position detection, that is useful for establishing a magnetic link at the beginning of an endoscopic procedure or for re-linking the capsule in the case of loss due to locomotion. The novelty of this approach consists in using magnetic sensors on board the capsule whose output is combined with pre-calculated magnetic field analytical model solutions. A magnetic field triangulation algorithm is used for obtaining the position of the capsule inside the gastrointestinal tract. Experimental validation has demonstrated that the proposed procedure is stable, accurate and has a wide localization range in a volume of about 18 × 103 cm3. Position errors of 14 mm along the X direction, 11 mm along the Y direction and 19 mm along the Z direction were obtained in less than 27 s of elaboration time. The proposed approach, being compatible with magnetic fields used for locomotion, can be easily extended to other platforms for active capsule endoscopy.
Sensors | 2015
Gastone Ciuti; Leonardo Ricotti; Arianna Menciassi; Paolo Dario
Over the past few decades the increased level of public awareness concerning healthcare, physical activities, safety and environmental sensing has created an emerging need for smart sensor technologies and monitoring devices able to sense, classify, and provide feedbacks to users’ health status and physical activities, as well as to evaluate environmental and safety conditions in a pervasive, accurate and reliable fashion. Monitoring and precisely quantifying users’ physical activity with inertial measurement unit-based devices, for instance, has also proven to be important in health management of patients affected by chronic diseases, e.g., Parkinson’s disease, many of which are becoming highly prevalent in Italy and in the Western world. This review paper will focus on MEMS sensor technologies developed in Italy in the last three years describing research achievements for healthcare and physical activity, safety and environmental sensing, in addition to smart systems integration. Innovative and smart integrated solutions for sensing devices, pursued and implemented in Italian research centres, will be highlighted, together with specific applications of such technologies. Finally, the paper will depict the future perspective of sensor technologies and corresponding exploitation opportunities, again with a specific focus on Italy.
Expert Review of Medical Devices | 2014
Levin J. Sliker; Gastone Ciuti
Endoscopy dates back to the 1860s, but many of the most significant advancements have been made within the past decade. With the integration of robotics, the ability to precisely steer and advance traditional flexible endoscopes has been realized, reducing patient pain and improving clinician ergonomics. Additionally, wireless capsule endoscopy, a revolutionary alternative to traditional scopes, enables inspection of the digestive system with minimal discomfort for the patient or the need for sedation, mitigating some of the risks of flexible endoscopy. This review presents a research update on robotic endoscopic systems, including both flexible scope and capsule technologies, detailing actuation methods and therapeutic capabilities. A future perspective on endoscopic potential for screening, diagnostic and therapeutic gastrointestinal procedures is also presented.
IEEE Transactions on Biomedical Engineering | 2013
Jenna L. Gorlewicz; Santina Battaglia; Byron F. Smith; Gastone Ciuti; Jason S. Gerding; Arianna Menciassi; Keith L. Obstein; Pietro Valdastri; Robert J. Webster
Despite clear patient experience advantages, low specificity rates have thus far prevented swallowable capsule endoscopes from replacing traditional endoscopy for diagnosis of colon disease. One explanation for this is that capsule endoscopes lack the ability to provide insufflation, which traditional endoscopes use to distend the intestine for a clear view of the internal wall. To provide a means of insufflation from a wireless capsule platform, in this paper we use biocompatible effervescent chemical reactions to convert liquids and powders carried onboard a capsule into gas. We experimentally evaluate the quantity of gas needed to enhance capsule visualization and locomotion, and determine how much gas can be generated from a given volume of reactants. These experiments motivate the design of a wireless insufflation capsule, which is evaluated in ex vivo experiments. These experiments illustrate the feasibility of enhancing visualization and locomotion of endoscopic capsules through wireless insufflation.
Digestive and Liver Disease | 2013
Alberto Arezzo; Arianna Menciassi; Pietro Valdastri; Gastone Ciuti; Gioia Lucarini; Marco Salerno; Christian Di Natali; Mauro Verra; Paolo Dario; Mario Morino
BACKGROUND Despite colonoscopy represents the conventional diagnostic tool for colorectal pathology, its undeniable discomfort reduces compliance to screening programmes. AIMS To evaluate feasibility and accuracy of a novel robotically-driven magnetic capsule for colonoscopy as compared to the traditional technique. METHODS Eleven experts and eleven trainees performed complete colonoscopy by robotic magnetic capsule and by conventional colonoscope in a phantom ex vivo model (artificially clean swine bowel). Feasibility, overall accuracy to detect installed pins, procedure elapsed time and intuitiveness were measured for both techniques in both operator groups. RESULTS Complete colonoscopy was feasible in all cases with both techniques. Overall 544/672 pins (80.9%) were detected by experimental capsule procedure, while 591/689 pins (85.8%) were detected within conventional colonoscopy procedure (P=ns), thus establishing non-inferiority. With the experimental capsule procedure, experts detected 74.2% of pins vs. 87.6% detected by trainees (P<0.0001). Overall time to complete colon inspection by robotic capsule was significantly higher than by conventional colonoscopy (556±188s vs. 194±158s, respectively; P=0.0001). CONCLUSION With the limitations represented by an ex vivo setting (artificially clean swine bowel and the absence of peristalsis), colonoscopy by this novel robotically-driven capsule resulted feasible and showed adequate accuracy compared to conventional colonoscopy.
International Journal of Molecular Sciences | 2014
Lisa Gherardini; Gastone Ciuti; Selene Tognarelli; Caterina Cinti
There is a growing concern in the population about the effects that environmental exposure to any source of “uncontrolled” radiation may have on public health. Anxiety arises from the controversial knowledge about the effect of electromagnetic field (EMF) exposure to cells and organisms but most of all concerning the possible causal relation to human diseases. Here we reviewed those in vitro and in vivo and epidemiological works that gave a new insight about the effect of radio frequency (RF) exposure, relating to intracellular molecular pathways that lead to biological and functional outcomes. It appears that a thorough application of standardized protocols is the key to reliable data acquisition and interpretation that could contribute a clearer picture for scientists and lay public. Moreover, specific tuning of experimental and clinical RF exposure might lead to beneficial health effects.
Journal of Robotic Surgery | 2012
Selene Tognarelli; V. Castelli; Gastone Ciuti; C. Di Natali; Edoardo Sinibaldi; Paolo Dario; Arianna Menciassi
In this paper a robotic means of magnetic navigation of an endovascular device a few millimeters in diameter is presented. The technique, based on traditional computer-assisted surgery adapted to intravascular medical procedures, includes a manipulator for magnetic dragging interfaced with an ultrasound system for tracking the endovascular device. The main factors affecting device propulsion are theoretically analyzed, including magnetic forces, fluidic forces, and friction forces between the endovascular device and the vessel. A dedicated set-up for measuring locomotion, and for navigation with and against the flow, has been developed and preliminary tests have been performed to derive the best configuration for controlled magnetic dragging in the vascular system. Experimental outcomes are consistent with a simple analytical model that analyzes dragging of the magnetic capsule in a tube. By means of this model, different working conditions can be considered to select the appropriate conditions, for example flow rate, coefficient of friction, or magnetic properties.