Gates B. Roe
University of Colorado Denver
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gates B. Roe.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2011
Paul J. Rozance; Gregory J. Seedorf; Alicia Brown; Gates B. Roe; Meghan C. O'Meara; Jason Gien; Jen-Ruey Tang; Steven H. Abman
Intrauterine growth restriction (IUGR) increases the risk for bronchopulmonary dysplasia (BPD). Abnormal lung structure has been noted in animal models of IUGR, but whether IUGR adversely impacts fetal pulmonary vascular development and pulmonary artery endothelial cell (PAEC) function is unknown. We hypothesized that IUGR would decrease fetal pulmonary alveolarization, vascular growth, and in vitro PAEC function. Studies were performed in an established model of severe placental insufficiency and IUGR induced by exposing pregnant sheep to elevated temperatures. Alveolarization, quantified by radial alveolar counts, was decreased 20% (P < 0.005) in IUGR fetuses. Pulmonary vessel density was decreased 44% (P < 0.01) in IUGR fetuses. In vitro, insulin increased control PAEC migration, tube formation, and nitric oxide (NO) production. This response was absent in IUGR PAECs. VEGFA stimulated tube formation, and NO production also was absent. In control PAECs, insulin increased cell growth by 68% (P < 0.0001). Cell growth was reduced in IUGR PAECs by 29% at baseline (P < 0.01), and the response to insulin was attenuated (P < 0.005). Despite increased basal and insulin-stimulated Akt phosphorylation in IUGR PAECs, endothelial NO synthase (eNOS) protein expression as well as basal and insulin-stimulated eNOS phosphorylation were decreased in IUGR PAECs. Both VEGFA and VEGFR2 also were decreased in IUGR PAECs. We conclude that fetuses with IUGR are characterized by decreased alveolar and vascular growth and PAEC dysfunction in vitro. This may contribute to the increased risk for adverse respiratory outcomes and BPD in infants with IUGR.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2011
Cassidy Delaney; Jason Gien; Theresa R. Grover; Gates B. Roe; Steven H. Abman
Maternal use of selective serotonin (5-HT) reuptake inhibitors (SSRIs) is associated with an increased risk for persistent pulmonary hypertension of the newborn (PPHN), but little is known about 5-HT signaling in the developing lung. We hypothesize that 5-HT plays a key role in maintaining high pulmonary vascular resistance (PVR) in the fetus and that fetal exposure to SSRIs increases 5-HT activity and causes pulmonary hypertension. We studied the hemodynamic effects of 5-HT, 5-HT receptor antagonists, and SSRIs in chronically prepared fetal sheep. Brief infusions of 5-HT (3-20 μg) increased PVR in a dose-related fashion. Ketanserin, a 5-HT 2A receptor antagonist, caused pulmonary vasodilation and inhibited 5-HT-induced pulmonary vasoconstriction. In contrast, intrapulmonary infusions of GR127945 and SB206553, 5-HT 1B and 5-HT 2B receptor antagonists, respectively, had no effect on basal PVR or 5-HT-induced vasoconstriction. Pretreatment with fasudil, a Rho kinase inhibitor, blunted the effects of 5-HT infusion. Brief infusions of the SSRIs, sertraline and fluoxetine, caused potent and sustained elevations of PVR, which was sustained for over 60 min after the infusion. SSRI-induced pulmonary vasoconstriction was reversed by infusion of ketanserin and did not affect the acute vasodilator effects of acetylcholine. We conclude that 5-HT causes pulmonary vasoconstriction, contributes to maintenance of high PVR in the normal fetus through stimulation of 5-HT 2A receptors and Rho kinase activation, and mediates the hypertensive effects of SSRIs. We speculate that prolonged exposure to SSRIs can induce PPHN through direct effects on the fetal pulmonary circulation.
Pediatric Research | 2013
Jason Gien; Nancy Tseng; Gregory J. Seedorf; Gates B. Roe; Steven H. Abman
Background:Endothelin-1 (ET-1) and Rho-kinase (ROCK) increase vascular tone in experimental persistent pulmonary hypertension of the newborn (PPHN). Whether ET-1 activates ROCK to decrease angiogenesis in the developing lung remains unknown.Methods:Proximal pulmonary artery endothelial cells (PAECs) were harvested from fetal sheep after partial ligation of the ductus arteriosus in utero (PPHN) and controls. Growth and tube formation were assessed after ET-1 treatment. The effect of ET-1 antagonism on tube formation was studied using ET-1 small interfering RNA (siRNA), ET-1 monoclonal antibodies (ET-1mAbs), BQ-123 (an ETA blocker), and bosentan (an ETA/ETB blocker). ET-1 gene and protein and ETA/ETB receptor protein expression were measured in normal and PPHN PAECs. ET-1–ROCK interactions were assessed by measuring ROCK activity after ET-1, ET-1 siRNA, and bosentan treatments, and tube formation with ET-1 and Y-27632 (ROCK inhibitor).Results:ET-1 did not affect growth but decreased tube formation in normal and PPHN PAECs. ET-1 protein and gene expression were increased and ETB receptor protein decreased in PPHN PAECs. ET-1 siRNA, ET-1mAbs, and bosentan, but not BQ-123, increased tube formation. ROCK activity was increased in PPHN PAECs and decreased with ET-1 siRNA and bosentan treatments. Y-27632 prevented the decrease in tube formation with ET-1.Conclusion:ET-1 activation of ROCK impairs angiogenesis of fetal PAECs. Disruption of ET-1–ROCK interactions may increase vascular growth in PPHN.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2014
David Wolf; Nancy Tseng; Gregory J. Seedorf; Gates B. Roe; Steven H. Abman; Jason Gien
Increased endothelin-1 (ET-1) disrupts angiogenesis in persistent pulmonary hypertension of the newborn (PPHN), but pathogenic mechanisms are unclear. Peroxisome proliferator activated receptor γ (PPARγ) is decreased in adult pulmonary hypertension, but whether ET-1-PPARγ interactions impair endothelial cell function and angiogenesis in PPHN remains unknown. We hypothesized that increased PPHN pulmonary artery endothelial cell (PAEC) ET-1 production decreases PPARγ signaling and impairs tube formation in vitro. Proximal PAECs were harvested from fetal sheep after partial ligation of the ductus arteriosus in utero (PPHN) and controls. PPARγ and phospho-PPARγ protein were compared between normal and PPHN PAECs ± ET-1 and bosentan (ETA/ETB receptor blocker). Tube formation was assessed in response to PPARγ agonists ± ET-1, N-nitro-l-arginine (LNA) (NOS inhibitor), and PPARγ siRNA. Endothelial NO synthase (eNOS), phospho-eNOS, and NO production were measured after exposure to PPARγ agonists and PPARγ siRNA. At baseline, PPHN PAECs demonstrate decreased tube formation and PPARγ protein expression and activity. PPARγ agonists restored PPHN tube formation to normal. ET-1 decreased normal and PPHN PAEC tube formation, which was rescued by PPARγ agonists. ET-1 decreased PPARγ protein and activity, which was prevented by bosentan. PPARγ agonists increased eNOS protein and activity and NO production in normal and PPHN PAECs. LNA inhibited the effect of PPARγ agonists on tube formation. PPARγ siRNA decreased eNOS protein and tube formation in normal PAECs. We conclude that ET-1 decreases PPARγ signaling and contributes to PAEC dysfunction and impaired angiogenesis in PPHN. We speculate that therapies aimed at decreasing ET-1 production will restore PPARγ signaling, preserve endothelial function, and improve angiogenesis in PPHN.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2013
Cassidy Delaney; Jason Gien; Gates B. Roe; Nicole Isenberg; Jenai Kailey; Steven H. Abman
Although past studies demonstrate that altered serotonin (5-HT) signaling is present in adults with idiopathic pulmonary arterial hypertension, whether serotonin contributes to the pathogenesis of persistent pulmonary hypertension of the newborn (PPHN) is unknown. We hypothesized that 5-HT contributes to increased pulmonary vascular resistance (PVR) in a sheep model of PPHN and that selective 5-HT reuptake inhibitor (SSRI) treatment increases PVR in this model. We studied the hemodynamic effects of 5-HT, ketanserin (5-HT2A receptor antagonist), and sertraline, an SSRI, on pulmonary hemodynamics of the late gestation fetal sheep with PPHN caused by prolonged constriction of the ductus arteriosis. Brief intrapulmonary infusions of 5-HT increased PVR from 1.0 ± 0.07 (baseline) to 1.4 ± 0.22 mmHg/ml per minute of treatment (P < 0.05). Ketanserin decreased PVR from 1.1 ± 0.15 (baseline) to 0.82 ± 0.09 mmHg/ml per minute of treatment (P < 0.05). Sertraline increased PVR from 1.1 ± 0.17 (baseline) to 1.4 ± 0.17 mmHg/ml per minute of treatment (P = 0.01). In addition, we studied 5-HT production and activity in vitro in experimental PPHN. Compared with controls, pulmonary artery endothelial cells from fetal sheep with PPHN exhibited increased expression of tryptophan hydroxylase 1 and 5-HT production by twofold and 56%, respectively. Compared with controls, 5-HT2A R expression was increased in lung homogenates and pulmonary artery smooth muscle cell lysates by 35% and 32%, respectively. We concluded that increased 5-HT contributes to high PVR in experimental PPHN through activation of the 5-HT2A receptor and that SSRI infusion further increases PVR in this model.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2014
Jason Gien; Nancy Tseng; Gregory J. Seedorf; Gates B. Roe; Steven H. Abman
Peroxisome proliferator-activated receptor-γ (PPARγ) and Rho-kinase (ROCK) regulate smooth muscle cell (SMC) proliferation and contribute to vascular remodeling in adult pulmonary hypertension. Whether these pathways interact to contribute to the development of vascular remodeling in persistent pulmonary hypertension of the newborn (PPHN) remains unknown. We hypothesized that ROCK-PPARγ interactions increase SMC proliferation resulting in vascular remodeling in experimental PPHN. Pulmonary artery SMCs (PASMCs) were harvested from fetal sheep after partial ligation of the ductus arteriosus in utero (PPHN) and controls. Cell counts were performed daily for 5 days with or without PPARγ agonists and ROCK inhibition. PPARγ and ROCK protein expression/activity were measured by Western blot in normal and PPHN PASMCs. We assessed PPARγ-ROCK interactions by studying the effect of ROCK activation on PPARγ activity and PPARγ inhibition (siRNA) on ROCK activity and PASMC proliferation. At baseline, PPHN PASMC cell number was increased by 38% above controls on day 5. ROCK protein expression/activity were increased by 25 and 34% and PPARγ protein/activity decreased by 40 and 50% in PPHN PASMC. ROCK inhibition and PPARγ activation restored PPHN PASMC growth to normal values. ROCK inhibition increased PPARγ activity by 50% in PPHN PASMC, restoring PPARγ activity to normal. In normal PASMCs, ROCK activation decreased PPARγ activity and PPARγ inhibition increased ROCK activity and cell proliferation, resulting in a PPHN hyperproliferative PASMC phenotype. PPARγ-ROCK interactions regulate SMC proliferation and contribute to increased PPHN PASMC proliferation and vascular remodeling in PPHN. Restoring normal PPARγ-ROCK signaling may prevent vascular remodeling and improve outcomes in PPHN.
American Journal of Respiratory Cell and Molecular Biology | 2018
Obiefuna C. Okponyia; Matthew D. McGraw; Marilyn M. Dysart; Rhonda B. Garlick; Jacqueline S. Rioux; Angela L. Murphy; Gates B. Roe; Carl W. White; Livia A. Veress
&NA; Chlorine is a highly reactive gas that can cause significant injury when inhaled. Unfortunately, its use as a chemical weapon has increased in recent years. Massive chlorine inhalation can cause death within 4 hours of exposure. Survivors usually require hospitalization after massive exposure. No countermeasures are available for massive chlorine exposure and supportive‐care measures lack controlled trials. In this work, adult rats were exposed to chlorine gas (LD58‐67) in a whole‐body exposure chamber, and given oxygen (0.8 FiO2) or air (0.21 FiO2) for 6 hours after baseline measurements were obtained. Oxygen saturation, vital signs, respiratory distress and neuromuscular scores, arterial blood gases, and hemodynamic measurements were obtained hourly. Massive chlorine inhalation caused severe acute respiratory failure, hypoxemia, decreased cardiac output, neuromuscular abnormalities (ataxia and hypotonia), and seizures resulting in early death. Oxygen improved survival to 6 hours (87% versus 42%) and prevented observed seizure‐related deaths. However, oxygen administration worsened the severity of acute respiratory failure in chlorine‐exposed rats compared with controls, with increased respiratory acidosis (pH 6.91 ± 0.04 versus 7.06 ± 0.01 at 2 h) and increased hypercapnia (180.0 ± 19.8 versus 103.2 ± 3.9 mm Hg at 2 h). In addition, oxygen did not improve neuromuscular abnormalities, cardiac output, or respiratory distress associated with chlorine exposure. Massive chlorine inhalation causes severe acute respiratory failure and multiorgan damage. Oxygen administration can improve short‐term survival but appears to worsen respiratory failure, with no improvement in cardiac output or neuromuscular dysfunction. Oxygen should be used with caution after massive chlorine inhalation, and the need for early assisted ventilation should be assessed in victims.
Toxicological Sciences | 2017
Matthew D. McGraw; Christopher M. Osborne; Emily J. Mastej; Jorge Di Paola; Dana R. Anderson; Wesley W. Holmes; Danielle Paradiso; Rhonda B. Garlick; Tara B. Hendry-Hofer; Raymond C. Rancourt; Russell W. Smith; Carol Burns; Gates B. Roe; Jacqueline S. Rioux; Carl W. White; Livia A. Veress
Sulfur mustard (SM) is a chemical warfare agent. When inhaled, SM causes significant injury to the respiratory tract. Although the mechanism involved in acute airway injury after SM inhalation has been well described previously, the mechanism of SMs contribution to distal lung vascular injury is not well understood. We hypothesized that acute inhalation of vaporized SM causes activated systemic coagulation with subsequent pulmonary vascular thrombi formation after SM inhalation exposure. Sprague Dawley rats inhaled SM ethanolic vapor (3.8 mg/kg). Barium/gelatin CT pulmonary angiograms were performed to assess for pulmonary vascular thrombi burden. Lung immunohistochemistry was performed for common procoagulant markers including fibrin(ogen), von Willebrand factor, and CD42d in control and SM-exposed lungs. Additionally, systemic levels of d-dimer and platelet aggregometry after adenosine diphosphate- and thrombin-stimulation were measured in plasma after SM exposure. In SM-exposed lungs, chest CT angiography demonstrated a significant decrease in the distal pulmonary vessel density assessed at 6 h postexposure. Immunohistochemistry also demonstrated increased intravascular fibrin(ogen), vascular von Willebrand factor, and platelet CD42d in the distal pulmonary vessels (<200 µm diameter). Circulating d-dimer levels were significantly increased (p < .001) at 6, 9, and 12 h after SM inhalation versus controls. Platelet aggregation was also increased in both adenosine diphosphate - (p < .01) and thrombin- (p < .001) stimulated platelet-rich plasma after SM inhalation. Significant pulmonary vascular thrombi formation was evident in distal pulmonary arterioles following SM inhalation in rats assessed by CT angiography and immunohistochemistry. Enhanced systemic platelet aggregation and activated systemic coagulation with subsequent thrombi formation likely contributed to pulmonary vessel occlusion.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2006
Thomas A. Parker; Gates B. Roe; Theresa R. Grover; Steven H. Abman
American Journal of Physiology-lung Cellular and Molecular Physiology | 1996
David A. Fullerton; John H. Eisenach; Robert C. McIntyre; Randall S. Friese; Brett C. Sheridan; Gates B. Roe; Jeanette Agrafojo; Anirban Banerjee; Alden H. Harken