Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gautam R. Desiraju is active.

Publication


Featured researches published by Gautam R. Desiraju.


Accounts of Chemical Research | 1996

The C-h···o hydrogen bond: structural implications and supramolecular design.

Gautam R. Desiraju

The C-H‚‚‚O hydrogen bond is so well-established in structural chemistry that it seems difficult now to believe that when Sutor proposed the existence of this type of hydrogen bond in the early 1960s,1,2 her suggestion was drowned in scepticism, if not outright hostility.3 It was only two decades later, with Taylor and Kennard’s paper, that the subject was properly revived.4 Shortly thereafter, an Account appeared from this laboratory describing the role of the C-H‚‚‚O interaction in crystal engineering.5 Subsequently, one felt confident enough to term these erstwhile “interactions” hydrogen bonds, in a second Account.6 A recent invitation to contribute another Account and the many recent efforts in this direction by my students and postdoctorals have led to the present paper. It is clearly no longer necessary to justify the relevance of C-H‚‚‚O hydrogen bonds, so widely invoked are they in small-molecule and biological crystallography. The presence of O-atoms in a large majority of organic molecules means that this hydrogen bond is widespread, even if not identified in many cases. However, other questions concerning these weak hydrogen bonds could be posed: (1) What is their upper distance limit? (2) Are very short, bent bonds significant? (3) Why do C-H‚‚‚O bonds sometimes disturb the strong O-H‚‚‚O and N-H‚‚‚O network? Alternatively, why do hydrogen bond donors and acceptors not always pair in descending order of strength? (4) How important is cooperativity for weak hydrogen bonds? (5) Are C-H‚‚‚O hydrogen bonds responsible for crystal packing, or are they the forced consequences of packing? (6) Are weak hydrogen bonds robust enough for supramolecular synthesis and crystal engineering? (7) Does the C-H‚‚‚O hydrogen bond have any biological significance? These difficult questions cannot be answered fully. This Account attempts to address some of them, but better answers can only follow from further work.


Pure and Applied Chemistry | 2011

Definition of the hydrogen bond (IUPAC Recommendations 2011)

E. Arunan; Gautam R. Desiraju; Roger A. Klein; Joanna Sadlej; Steve Scheiner; Ibon Alkorta; David C. Clary; Robert H. Crabtree; J. J. Dannenberg; Pavel Hobza; Henrik G. Kjaergaard; Anthony C. Legon; Benedetta Mennucci; David J. Nesbitt

A novel definition for the hydrogen bond is recommended here. It takes into account the theoretical and experimental knowledge acquired over the past century. This definition insists on some evidence. Six criteria are listed that could be used as evidence for the presence of a hydrogen bond.


Pure and Applied Chemistry | 2013

Definition of the halogen bond (IUPAC Recommendations 2013)

Gautam R. Desiraju; P. Shing Ho; Lars Kloo; Anthony C. Legon; Roberto Marquardt; Pierangelo Metrangolo; Peter Politzer; Giuseppe Resnati; Kari Rissanen

This recommendation proposes a definition for the term “halogen bond”, which designates a specific subset of the inter- and intramolecular interactions involving a halogen atom in a molecular entity.


Pure and Applied Chemistry | 2011

Defining the hydrogen bond: An account (IUPAC Technical Report)

E. Arunan; Gautam R. Desiraju; Roger A. Klein; Joanna Sadlej; Steve Scheiner; Ibon Alkorta; David C. Clary; Robert H. Crabtree; J. J. Dannenberg; Pavel Hobza; Henrik G. Kjaergaard; Anthony C. Legon; Benedetta Mennucci; David J. Nesbitt

The term “hydrogen bond” has been used in the literature for nearly a century now. While its importance has been realized by physicists, chemists, biologists, and material scientists, there has been a continual debate about what this term means. This debate has intensified following some important experimental results, especially in the last decade, which questioned the basis of the traditional view on hydrogen bonding. Most important among them are the direct experimental evidence for a partial covalent nature and the observation of a blue-shift in stretching frequency following X–H···Y hydrogen bond formation (XH being the hydrogen bond donor and Y being the hydrogen bond acceptor). Considering the recent experimental and theoretical advances, we have proposed a new definition of the hydrogen bond, which emphasizes the need for evidence. A list of criteria has been provided, and these can be used as evidence for the hydrogen bond formation. This list is followed by some characteristics that are observed in typical hydrogen-bonding environments.


Nature | 2001

Chemistry beyond the molecule.

Gautam R. Desiraju

Supramolecular chemistry has grown in importance because it goes beyond the molecule — the focus of classical chemistry. It also offers a fresh interface with biological and materials science.


Angewandte Chemie | 2011

A Bond by Any Other Name

Gautam R. Desiraju

A hydrogen bond is an interaction wherein a hydrogen atom is attracted to two atoms, rather than just one, and acts like a bridge between them. The strength of this attraction increases with the increasing electronegativity of either of the atoms, and in the classical view, all hydrogen bonds are highly electrostatic and sometimes even partly covalent. Gradually, the concept of a hydrogen bond has become more relaxed to include weaker and more dispersive interactions, provided some electrostatic character remains. A great variety of very strong, strong, moderately strong, weak, and very weak hydrogen bonds are observed in practice. Weak hydrogen bonds are now invoked in several matters in structural chemistry and biology. While strong hydrogen bonds are easily covered by all existing definitions of the phenomenon, the weaker ones may pose a challenge with regard to nomenclature and definitions. Recently, a recommendation has been made to the International Union of Pure and Applied Chemistry (IUPAC) suggesting an updated definition of the term hydrogen bond. This definition will be discussed in greater detail.


Acta Crystallographica Section B-structural Science | 2009

Significant progress in predicting the crystal structures of small organic molecules – a report on the fourth blind test

Graeme M. Day; Timothy G. Cooper; Aurora J. Cruz-Cabeza; Katarzyna E. Hejczyk; Herman L. Ammon; Stephan X. M. Boerrigter; Jeffrey S. Tan; Raffaele Guido Della Valle; Elisabetta Venuti; Jovan Jose; Shridhar R. Gadre; Gautam R. Desiraju; Tejender S. Thakur; Bouke P. van Eijck; Julio C. Facelli; Victor E. Bazterra; Marta B. Ferraro; D.W.M. Hofmann; Marcus A. Neumann; Frank J. J. Leusen; John Kendrick; Sarah L. Price; Alston J. Misquitta; Panagiotis G. Karamertzanis; Gareth W. A. Welch; Harold A. Scheraga; Yelena A. Arnautova; Martin U. Schmidt; Jacco van de Streek; Alexandra K. Wolf

We report on the organization and outcome of the fourth blind test of crystal structure prediction, an international collaborative project organized to evaluate the present state in computational methods of predicting the crystal structures of small organic molecules. There were 14 research groups which took part, using a variety of methods to generate and rank the most likely crystal structures for four target systems: three single-component crystal structures and a 1:1 cocrystal. Participants were challenged to predict the crystal structures of the four systems, given only their molecular diagrams, while the recently determined but as-yet unpublished crystal structures were withheld by an independent referee. Three predictions were allowed for each system. The results demonstrate a dramatic improvement in rates of success over previous blind tests; in total, there were 13 successful predictions and, for each of the four targets, at least two groups correctly predicted the observed crystal structure. The successes include one participating group who correctly predicted all four crystal structures as their first ranked choice, albeit at a considerable computational expense. The results reflect important improvements in modelling methods and suggest that, at least for the small and fairly rigid types of molecules included in this blind test, such calculations can be constructively applied to help understand crystallization and polymorphism of organic molecules.


Accounts of Chemical Research | 2014

Halogen Bonds in Crystal Engineering: Like Hydrogen Bonds yet Different

Arijit Mukherjee; Srinu Tothadi; Gautam R. Desiraju

The halogen bond is an attractive interaction in which an electrophilic halogen atom approaches a negatively polarized species. Short halogen atom contacts in crystals have been known for around 50 years. Such contacts are found in two varieties: type I, which is symmetrical, and type II, which is bent. Both are influenced by geometric and chemical considerations. Our research group has been using halogen atom interactions as design elements in crystal engineering, for nearly 30 years. These interactions include halogen···halogen interactions (X···X) and halogen···heteroatom interactions (X···B). Many X···X and almost all X···B contacts can be classified as halogen bonds. In this Account, we illustrate examples of crystal engineering where one can build up from previous knowledge with a focus that is provided by the modern definition of the halogen bond. We also comment on the similarities and differences between halogen bonds and hydrogen bonds. These interactions are similar because the protagonist atoms-halogen and hydrogen-are both electrophilic in nature. The interactions are distinctive because the size of a halogen atom is of consequence when compared with the atomic sizes of, for example, C, N, and O, unlike that of a hydrogen atom. Conclusions may be drawn pertaining to the nature of X···X interactions from the Cambridge Structural Database (CSD). There is a clear geometric and chemical distinction between type I and type II, with only type II being halogen bonds. Cl/Br isostructurality is explained based on a geometric model. In parallel, experimental studies on 3,4-dichlorophenol and its congeners shed light on the nature of halogen···halogen interactions and reveal the chemical difference between Cl and Br. Variable temperature studies also show differences between type I and type II contacts. In terms of crystal design, halogen bonds offer a unique opportunity in the strength, atom size and interaction gradation; this may be used in the design of ternary cocrystals. Structural modularity in which an entire crystal structure is defined as a combination of modules is rationalized on the basis of the intermediate strength of a halogen bond. The specific directionality of the halogen bond makes it a good tool to achieve orthogonality in molecular crystals. Mechanical properties can be tuned systematically by varying these orthogonally oriented halogen···halogen interactions. In a further development, halogen bonds are shown to play a systematic role in organization of LSAMs (long range synthon aufbau module), which are bigger structural units containing multiple synthons. With a formal definition in place, this may be the right time to look at differences between halogen bonds and hydrogen bonds and exploit them in more subtle ways in crystal engineering.


Acta Crystallographica Section B-structural Science | 2011

Towards crystal structure prediction of complex organic compounds – a report on the fifth blind test

David A. Bardwell; Claire S. Adjiman; Yelena A. Arnautova; E. V. Bartashevich; Stephan X. M. Boerrigter; Doris E. Braun; Aurora J. Cruz-Cabeza; Graeme M. Day; Raffaele Guido Della Valle; Gautam R. Desiraju; Bouke P. van Eijck; Julio C. Facelli; Marta B. Ferraro; Damián A. Grillo; Matthew Habgood; D.W.M. Hofmann; Fridolin Hofmann; K. V. Jovan Jose; Panagiotis G. Karamertzanis; Andrei V. Kazantsev; John Kendrick; Liudmila N. Kuleshova; Frank J. J. Leusen; Andrey V. Maleev; Alston J. Misquitta; Sharmarke Mohamed; R. J. Needs; Marcus A. Neumann; Denis Nikylov; Anita M. Orendt

The results of the fifth blind test of crystal structure prediction, which show important success with more challenging large and flexible molecules, are presented and discussed.


Angewandte Chemie | 2009

The Nature of Halogen⋅⋅⋅Halogen Interactions: A Model Derived from Experimental Charge‐Density Analysis

Thai Thanh Thu Bui; Slimane Dahaoui; Claude Lecomte; Gautam R. Desiraju; Enrique Espinosa

Slightly attractive: The attractive and anisotropic nature of the ClCl interaction in C(6)Cl(6) is experimentally demonstrated from an expansion of the electron density rho(r) around the chlorine nuclei. The interaction is explained in a model in which there is a bonding attraction involving electron-deficient (see picture, blue) and electron-rich (red) regions of adjacent Cl atoms.

Collaboration


Dive into the Gautam R. Desiraju's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland Boese

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tejender S. Thakur

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Jagarlapudi A. R. P. Sarma

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

U. Ramamurty

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Rahul Banerjee

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge