Gavin Brooks
University of Reading
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gavin Brooks.
Journal of Virology | 2001
Torsten Wurm; Hongying Chen; Teri Hodgson; Paul Britton; Gavin Brooks; Julian A. Hiscox
ABSTRACT The subcellular localization of transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV) (group I and group II coronaviruses, respectively) nucleoproteins (N proteins) were examined by confocal microscopy. The proteins were shown to localize either to the cytoplasm alone or to the cytoplasm and a structure in the nucleus. This feature was confirmed to be the nucleolus by using specific antibodies to nucleolin, a major component of the nucleolus, and by confocal microscopy to image sections through a cell expressing N protein. These findings are consistent with our previous report for infectious bronchitis virus (group III coronavirus) (J. A. Hiscox et al., J. Virol. 75:506–512, 2001), indicating that nucleolar localization of the N protein is a common feature of the coronavirus family and is possibly of functional significance. Nucleolar localization signals were identified in the domain III region of the N protein from all three coronavirus groups, and this suggested that transport of N protein to the nucleus might be an active process. In addition, our results suggest that the N protein might function to disrupt cell division. Thus, we observed that approximately 30% of cells transfected with the N protein appeared to be undergoing cell division. The most likely explanation for this is that the N protein induced a cell cycle delay or arrest, most likely in the G2/M phase. In a fraction of transfected cells expressing coronavirus N proteins, we observed multinucleate cells and dividing cells with nucleoli (which are only present during interphase). These findings are consistent with the possible inhibition of cytokinesis in these cells.
Journal of Virology | 2001
Julian A. Hiscox; Torsten Wurm; Louise Wilson; Paul Britton; David Cavanagh; Gavin Brooks
ABSTRACT The coronavirus nucleoprotein (N) has been reported to be involved in various aspects of virus replication. We examined by confocal microscopy the subcellular localization of the avian infectious bronchitis virus N protein both in the absence and in the context of an infected cell and found that N protein localizes both to the cytoplasmic and nucleolar compartments.
Circulation Research | 2006
Michael R. Morissette; Stuart A. Cook; ShiYin Foo; Godfrina McKoy; Noboru Ashida; Mikhail Novikov; Marielle Scherrer-Crosbie; Ling Li; Takashi Matsui; Gavin Brooks; Anthony Rosenzweig
Myostatin is a highly conserved, potent negative regulator of skeletal muscle hypertrophy in many species, from rodents to humans, although its mechanisms of action are incompletely understood. Transcript profiling of hearts from a genetic model of cardiac hypertrophy revealed dramatic upregulation of myostatin, not previously recognized to play a role in the heart. Here we show that myostatin abrogates the cardiomyocyte growth response to phenylephrine in vitro through inhibition of p38 and the serine–threonine kinase Akt, a critical determinant of cell size in many species from drosophila to mammals. Evaluation of male myostatin-null mice revealed that their cardiomyocytes and hearts overall were slightly smaller at baseline than littermate controls but exhibited more exuberant growth in response to chronic phenylephrine infusion. The increased cardiac growth in myostatin-null mice corresponded with increased p38 phosphorylation and Akt activation in vivo after phenylephrine treatment. Together, these data demonstrate that myostatin is dynamically regulated in the heart and acts more broadly than previously appreciated to regulate growth of multiple types of striated muscle.
Circulation Research | 1999
Robert A. Poolman; Jian-Mei Li; Beatrice Durand; Gavin Brooks
-The precise role of cell cycle-dependent molecules in controlling the switch from cardiac myocyte hyperplasia to hypertrophy remains to be determined. We report that loss of p27(KIP1) in the mouse results in a significant increase in heart size and in the total number of cardiac myocytes. In comparison to p27(KIP1)+/+ myocytes, the percentage of neonatal p27(KIP1)-/- myocytes in S phase was increased significantly, concomitant with a significant decrease in the percentage of G(0)/G(1) cells. The expressions of proliferating cell nuclear antigen, G(1)/S and G(2)/M phase-acting cyclins, and cyclin-dependent kinases (CDKs) were upregulated significantly in ventricular tissue obtained from early neonatal p27(KIP1)-/- mice, concomitant with a substantial decrease in the expressions of G(1) phase-acting cyclins and CDKs. Furthermore, mRNA expressions of the embryonic genes atrial natriuretic factor and alpha-skeletal actin were detectable at significant levels in neonatal and adult p27(KIP1)-/- mouse hearts but were undetectable in p27(KIP1)+/+ hearts. In addition, loss of p27(KIP1) was not compensated for by the upregulation of other CDK inhibitors. Thus, the loss of p27(KIP1) results in prolonged proliferation of the mouse cardiac myocyte and perturbation of myocyte hypertrophy.
Journal of Virology | 2002
Hongying Chen; Torsten Wurm; Paul Britton; Gavin Brooks; Julian A. Hiscox
ABSTRACT Coronavirus nucleoproteins (N proteins) localize to the cytoplasm and the nucleolus, a subnuclear structure, in both virus-infected primary cells and in cells transfected with plasmids that express N protein. The nucleolus is the site of ribosome biogenesis and sequesters cell cycle regulatory complexes. Two of the major components of the nucleolus are fibrillarin and nucleolin. These proteins are involved in nucleolar assembly and ribosome biogenesis and act as chaperones for the import of proteins into the nucleolus. We have found that fibrillarin is reorganized in primary cells infected with the avian coronavirus infectious bronchitis virus (IBV) and in continuous cell lines that express either IBV or mouse hepatitis virus N protein. Both N protein and a fibrillarin-green fluorescent protein fusion protein colocalized to the perinuclear region and the nucleolus. Pull-down assays demonstrated that IBV N protein interacted with nucleolin and therefore provided a possible explanation as to how coronavirus N proteins localize to the nucleolus. Nucleoli, and proteins that localize to the nucleolus, have been implicated in cell growth-cell cycle regulation. Comparison of cells expressing IBV N protein with controls indicated that cells expressing N protein had delayed cellular growth. This result could not to be attributed to apoptosis. Morphological analysis of these cells indicated that cytokinesis was disrupted, an observation subsequently found in primary cells infected with IBV. Coronaviruses might therefore delay the cell cycle in interphase, where maximum translation of viral mRNAs can occur.
Circulation Research | 1996
Gavin Brooks; David J. Hearse
Although it may be debatable whether preconditioning will ever fulfill its clinical expectations, the hope that a new therapeutic modality may emerge from this fascinating phenomenon has given great impetus to the search for its underlying mechanism. Preconditioning is unquestionably a powerful phenomenon, it is readily and consistently demonstrable under many experimental conditions, and it has just celebrated its 10th birthday.1 In view of all this, it is perhaps surprising that the precise mechanism of preconditioning remains elusive and recently has become the subject of controversy. An observer of the preconditioning literature could, at first sight, be forgiven for concluding that the precise mechanism is established and that protein kinase C (PKC) activation is a pivotal common factor that links a spectrum of receptor-mediated triggers of preconditioning. Downey and colleagues, now supported by other investigators (reviewed in References 2 and 3),2 3 have developed the compelling hypothesis that stimulation of a variety of G protein–coupled receptors (eg, adenosine A1, α1-adrenergic, muscarinic, bradykinin, and endothelin-1 receptors) results in the activation of PKC. This, in turn, leads to the physical translocation of PKC from the cytoplasm to the sarcolemma, where it phosphorylates a substrate protein (possibly the ATP-sensitive K+ [KATP] channel4 ) and thereby confers resistance to ischemia. Support for this attractive hypothesis comes from a wealth of studies (most of which rely upon indirect evidence in the absence of PKC activity measurements) with activators and inhibitors of PKC or its translocation process, with receptor agonists and antagonists, and with agents that interfere with the signaling pathways between various receptors and PKC (reviewed in References 5 and 6). Considering the substantial body of evidence supporting the involvement of PKC activation in the preconditioning phenomenon, the observer could again be forgiven for wondering …
Cardiovascular Research | 1998
Gavin Brooks; Robert A. Poolman; Jian-Mei Li
Like most other cells in the body, foetal and neonatal cardiac myocytes are able to divide and proliferate. However, the ability of these cells to undergo cell division decreases progressively during development such that adult myocytes are unable to divide. A major problem arising from this inability of adult cardiac myocytes to proliferate is that the mature heart is unable to regenerate new myocardial tissue following severe injury, e.g. infarction, which can lead to compromised cardiac pump function and even death. Studies in proliferating cells have identified a group of genes and proteins that controls cell division. These proteins include cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors (CDKIs), which interact with each other to form complexes that are essential for controlling normal cell cycle progression. A variety of other proteins, e.g. the retinoblastoma protein (pRb) and members of the E2F family of transcription factors, also can interact with, and modulate the activities of, these complexes. Despite the major role that these proteins play in other cell types, little was known until recently about their existence and activities in immature (proliferating) or mature (non-proliferating) cardiac myocytes. The reason(s) why cardiac myocytes lose their ability to divide during development remains unknown, but if strategies were developed to understand the mechanisms underlying cardiac myocyte growth, it could open up new avenues for the treatment of cardiovascular disease. In this article, we shall review the function of the cell cycle machinery and outline some of our recent findings pertaining to the involvement of the cell cycle in modulating cardiac myocyte growth and hypertrophy.
American Journal of Physiology-heart and Circulatory Physiology | 1998
Jian-Mei Li; Robert A. Poolman; Gavin Brooks
Cell cycle regulatory molecules are implicated in cardiomyocyte hypertrophy. We have investigated protein expression of cyclins A, D1-3, and E and cyclin-dependent kinases (CDKs) 2, 4, 5, and 6 in left ventricular (LV) tissues during the development of LV hypertrophy in rats following aortic constriction (AC). Compared with their expression in sham-operated controls (SH), expression of cyclins D2 and D3 and of CDK4 and CDK6 increased significantly from day 3 to day 21 after AC concomitant with increased LV mass. However, no significant difference was observed for CDK2 or CDK5. Cyclins A, D1, and E were undetectable. In vitro kinase activities of CDK4 and CDK6 increased approximately 70% from day 7 to day 14 in AC myocytes compared with SH myocytes (P < 0.03). Fluorescence-activated cell sorter analysis revealed a G0/G1 to G2/M phase progression in AC myocyte nuclei (22.0 +/- 1.1% in G2/M) by day 7 postoperation compared with progression in SH myocyte nuclei (14.0 +/- 0.8% in G2/M; P < 0.01). Thus an upregulation of certain cell cycle regulators is associated with cardiomyocyte hypertrophy.Cell cycle regulatory molecules are implicated in cardiomyocyte hypertrophy. We have investigated protein expression of cyclins A, D1-3, and E and cyclin-dependent kinases (CDKs) 2, 4, 5, and 6 in left ventricular (LV) tissues during the development of LV hypertrophy in rats following aortic constriction (AC). Compared with their expression in sham-operated controls (SH), expression of cyclins D2 and D3 and of CDK4 and CDK6 increased significantly from day 3 to day 21 after AC concomitant with increased LV mass. However, no significant difference was observed for CDK2 or CDK5. Cyclins A, D1, and E were undetectable. In vitro kinase activities of CDK4 and CDK6 increased ∼70% from day 7 to day 14 in AC myocytes compared with SH myocytes ( P< 0.03). Fluorescence-activated cell sorter analysis revealed a G0/G1to G2/M phase progression in AC myocyte nuclei (22.0 ± 1.1% in G2/M) by day 7 postoperation compared with progression in SH myocyte nuclei (14.0 ± 0.8% in G2/M; P < 0.01). Thus an upregulation of certain cell cycle regulators is associated with cardiomyocyte hypertrophy.
International Journal of Pharmaceutics | 2009
Latha Aravindan; Katrina A. Bicknell; Gavin Brooks; Vitaliy V. Khutoryanskiy; Adrian C. Williams
Polyethylenimine (PEI) is an efficient nonviral gene delivery vector because of its high buffering capacity and DNA condensation ability. In our study, the amino groups on the polymeric backbone were acylated using acetic or propionic anhydride to alter the protonation behaviour and the hydrophilic/hydrophobic balance of the polymer. The concentration of acylated primary amines was determined using trinitrobenzene sulphonic acid assay. Results showed that our modified polymers had lower buffering capacities in solutions compared to PEI. The polymers were complexed with plasmid encoding enhanced green fluorescent protein at three different ratios (1:1, 1:2 and 1:10 w/w DNA to polymer) to form polyplexes and their toxicities and transfection efficiencies were evaluated in HEK 293 cells. Acylation reduced the number of primary amines on the polymer and the surface charge, improving haemocompatibility and reducing cytotoxicity. The reduction in the concentration of amino groups helped to optimise DNA compaction and facilitated polyplex dissociation in the cell, which increased transfection efficiency of the modified polymers compared to the parent polymer. Polymers with buffering capacities greater than 50% and less than 80% relative to PEI, showed higher transfection efficiencies than PEI. The propionic anhydride modified polymers had appropriate interactions with DNA which provided both DNA compaction and polyplex dissociation. These systems interacted better with the cell membrane because of their slightly higher lipophilicity and formed polyplexes which were less cytotoxic than polyplexes of acetic anhydride modified polymers. Among the vectors tested, 1:0.3 mol/mol PEI:propionic anhydride in a 1:2 w/w DNA:polymer composition provided the best transfection system with improved transfection efficiency and reduced cytotoxicity.
Methods of Molecular Biology | 2005
Jane V. Harper; Gavin Brooks
In recent years, we have witnessed major advances in our understanding of the mammalian cell cycle and how it is regulated. Normal mammalian cellular proliferation is tightly regulated at each phase of the cell cycle by the activation and deactivation of a series of proteins that constitute the cell cycle machinery. This review article describes the various phases of the mammalian cell cycle and focuses on the cell cycle regulatory molecules that act at each stage to ensure normal cellular progression.