Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gavin Ha is active.

Publication


Featured researches published by Gavin Ha.


Nature | 2012

The clonal and mutational evolution spectrum of primary triple-negative breast cancers.

Sohrab P. Shah; Andrew Roth; Rodrigo Goya; Arusha Oloumi; Gavin Ha; Yongjun Zhao; Gulisa Turashvili; Jiarui Ding; Kane Tse; Gholamreza Haffari; Ali Bashashati; Leah M Prentice; Jaswinder Khattra; Angela Burleigh; Damian Yap; Virginie Bernard; Andrew McPherson; Karey Shumansky; Anamaria Crisan; Ryan Giuliany; Alireza Heravi-Moussavi; Jamie Rosner; Daniel Lai; Inanc Birol; Richard Varhol; Angela Tam; Noreen Dhalla; Thomas Zeng; Kevin Ma; Simon K. Chan

Primary triple-negative breast cancers (TNBCs), a tumour type defined by lack of oestrogen receptor, progesterone receptor and ERBB2 gene amplification, represent approximately 16% of all breast cancers. Here we show in 104 TNBC cases that at the time of diagnosis these cancers exhibit a wide and continuous spectrum of genomic evolution, with some having only a handful of coding somatic aberrations in a few pathways, whereas others contain hundreds of coding somatic mutations. High-throughput RNA sequencing (RNA-seq) revealed that only approximately 36% of mutations are expressed. Using deep re-sequencing measurements of allelic abundance for 2,414 somatic mutations, we determine for the first time—to our knowledge—in an epithelial tumour subtype, the relative abundance of clonal frequencies among cases representative of the population. We show that TNBCs vary widely in their clonal frequencies at the time of diagnosis, with the basal subtype of TNBC showing more variation than non-basal TNBC. Although p53 (also known as TP53), PIK3CA and PTEN somatic mutations seem to be clonally dominant compared to other genes, in some tumours their clonal frequencies are incompatible with founder status. Mutations in cytoskeletal, cell shape and motility proteins occurred at lower clonal frequencies, suggesting that they occurred later during tumour progression. Taken together, our results show that understanding the biology and therapeutic responses of patients with TNBC will require the determination of individual tumour clonal genotypes.


The New England Journal of Medicine | 2010

ARID1A Mutations in Endometriosis-Associated Ovarian Carcinomas

Kimberly C. Wiegand; Sohrab P. Shah; Osama M. Al-Agha; Yongjun Zhao; Kane Tse; Thomas Zeng; Janine Senz; Melissa K. McConechy; Michael S. Anglesio; Steve E. Kalloger; Winnie Yang; Alireza Heravi-Moussavi; Ryan Giuliany; Christine Chow; John Fee; Abdalnasser Zayed; Leah M Prentice; Nataliya Melnyk; Gulisa Turashvili; Allen Delaney; Jason Madore; Stephen Yip; Andrew McPherson; Gavin Ha; Lynda Bell; Sian Fereday; Angela Tam; Laura Galletta; Patricia N. Tonin; Diane Provencher

BACKGROUND Ovarian clear-cell and endometrioid carcinomas may arise from endometriosis, but the molecular events involved in this transformation have not been described. METHODS We sequenced the whole transcriptomes of 18 ovarian clear-cell carcinomas and 1 ovarian clear-cell carcinoma cell line and found somatic mutations in ARID1A (the AT-rich interactive domain 1A [SWI-like] gene) in 6 of the samples. ARID1A encodes BAF250a, a key component of the SWI–SNF chromatin remodeling complex. We sequenced ARID1A in an additional 210 ovarian carcinomas and a second ovarian clear-cell carcinoma cell line and measured BAF250a expression by means of immunohistochemical analysis in an additional 455 ovarian carcinomas. RESULTS ARID1A mutations were seen in 55 of 119 ovarian clear-cell carcinomas (46%), 10 of 33 endometrioid carcinomas (30%), and none of the 76 high-grade serous ovarian carcinomas. Seventeen carcinomas had two somatic mutations each. Loss of the BAF250a protein correlated strongly with the ovarian clear-cell carcinoma and endometrioid carcinoma subtypes and the presence of ARID1A mutations. In two patients, ARID1A mutations and loss of BAF250a expression were evident in the tumor and contiguous atypical endometriosis but not in distant endometriotic lesions. CONCLUSIONS These data implicate ARID1A as a tumor-suppressor gene frequently disrupted in ovarian clear-cell and endometrioid carcinomas. Since ARID1A mutation and loss of BAF250a can be seen in the preneoplastic lesions, we speculate that this is an early event in the transformation of endometriosis into cancer. (Funded by the British Columbia Cancer Foundation and the Vancouver General Hospital–University of British Columbia Hospital Foundation.).


PLOS Computational Biology | 2011

deFuse: An Algorithm for Gene Fusion Discovery in Tumor RNA-Seq Data

Andrew McPherson; Fereydoun Hormozdiari; Abdalnasser Zayed; Ryan Giuliany; Gavin Ha; Mark Sun; Malachi Griffith; Alireza Heravi Moussavi; Janine Senz; Nataliya Melnyk; Marina Pacheco; Marco A. Marra; Martin Hirst; Torsten O. Nielsen; S. Cenk Sahinalp; David Huntsman; Sohrab P. Shah

Gene fusions created by somatic genomic rearrangements are known to play an important role in the onset and development of some cancers, such as lymphomas and sarcomas. RNA-Seq (whole transcriptome shotgun sequencing) is proving to be a useful tool for the discovery of novel gene fusions in cancer transcriptomes. However, algorithmic methods for the discovery of gene fusions using RNA-Seq data remain underdeveloped. We have developed deFuse, a novel computational method for fusion discovery in tumor RNA-Seq data. Unlike existing methods that use only unique best-hit alignments and consider only fusion boundaries at the ends of known exons, deFuse considers all alignments and all possible locations for fusion boundaries. As a result, deFuse is able to identify fusion sequences with demonstrably better sensitivity than previous approaches. To increase the specificity of our approach, we curated a list of 60 true positive and 61 true negative fusion sequences (as confirmed by RT-PCR), and have trained an adaboost classifier on 11 novel features of the sequence data. The resulting classifier has an estimated value of 0.91 for the area under the ROC curve. We have used deFuse to discover gene fusions in 40 ovarian tumor samples, one ovarian cancer cell line, and three sarcoma samples. We report herein the first gene fusions discovered in ovarian cancer. We conclude that gene fusions are not infrequent events in ovarian cancer and that these events have the potential to substantially alter the expression patterns of the genes involved; gene fusions should therefore be considered in efforts to comprehensively characterize the mutational profiles of ovarian cancer transcriptomes.


Nature | 2015

Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution.

Peter Eirew; Adi Steif; Jaswinder Khattra; Gavin Ha; Damian Yap; Hossein Farahani; Karen A. Gelmon; Stephen Chia; Colin Mar; Adrian Wan; Emma Laks; Justina Biele; Karey Shumansky; Jamie Rosner; Andrew McPherson; Cydney Nielsen; Andrew Roth; Calvin Lefebvre; Ali Bashashati; Camila P. E. de Souza; Celia Siu; Radhouane Aniba; Jazmine Brimhall; Arusha Oloumi; Tomo Osako; Alejandra Bruna; Jose L. Sandoval; Teresa Ruiz de Algara; Wendy Greenwood; Kaston Leung

Human cancers, including breast cancers, comprise clones differing in mutation content. Clones evolve dynamically in space and time following principles of Darwinian evolution, underpinning important emergent features such as drug resistance and metastasis. Human breast cancer xenoengraftment is used as a means of capturing and studying tumour biology, and breast tumour xenografts are generally assumed to be reasonable models of the originating tumours. However, the consequences and reproducibility of engraftment and propagation on the genomic clonal architecture of tumours have not been systematically examined at single-cell resolution. Here we show, using deep-genome and single-cell sequencing methods, the clonal dynamics of initial engraftment and subsequent serial propagation of primary and metastatic human breast cancers in immunodeficient mice. In all 15 cases examined, clonal selection on engraftment was observed in both primary and metastatic breast tumours, varying in degree from extreme selective engraftment of minor (<5% of starting population) clones to moderate, polyclonal engraftment. Furthermore, ongoing clonal dynamics during serial passaging is a feature of tumours experiencing modest initial selection. Through single-cell sequencing, we show that major mutation clusters estimated from tumour population sequencing relate predictably to the most abundant clonal genotypes, even in clonally complex and rapidly evolving cases. Finally, we show that similar clonal expansion patterns can emerge in independent grafts of the same starting tumour population, indicating that genomic aberrations can be reproducible determinants of evolutionary trajectories. Our results show that measurement of genomically defined clonal population dynamics will be highly informative for functional studies using patient-derived breast cancer xenoengraftment.


Nature Methods | 2014

PyClone: statistical inference of clonal population structure in cancer

Andrew Roth; Jaswinder Khattra; Damian Yap; Adrian Wan; Emma Laks; Justina Biele; Gavin Ha; Samuel Aparicio; Alexandre Bouchard-Côté; Sohrab P. Shah

We introduce PyClone, a statistical model for inference of clonal population structures in cancers. PyClone is a Bayesian clustering method for grouping sets of deeply sequenced somatic mutations into putative clonal clusters while estimating their cellular prevalences and accounting for allelic imbalances introduced by segmental copy-number changes and normal-cell contamination. Single-cell sequencing validation demonstrates PyClones accuracy.


The New England Journal of Medicine | 2012

Recurrent Somatic DICER1 Mutations in Nonepithelial Ovarian Cancers

Alireza Heravi-Moussavi; Michael S. Anglesio; S.-W. Grace Cheng; Janine Senz; Winnie Yang; Leah M Prentice; Anthony P. Fejes; Christine Chow; Alicia A. Tone; Steve E. Kalloger; Nancy Hamel; Andrew Roth; Gavin Ha; Adrian Wan; Sarah Maines-Bandiera; Clara Salamanca; Barbara Pasini; Blaise Clarke; Anna F. Lee; Cheng-Han Lee; Chengquan Zhao; Robert H. Young; Samuel Aparicio; Poul H. Sorensen; Michelle Woo; Niki Boyd; Steven J.M. Jones; Martin Hirst; Marco A. Marra; Blake Gilks

BACKGROUND Germline truncating mutations in DICER1, an endoribonuclease in the RNase III family that is essential for processing microRNAs, have been observed in families with the pleuropulmonary blastoma-family tumor and dysplasia syndrome. Mutation carriers are at risk for nonepithelial ovarian tumors, notably sex cord-stromal tumors. METHODS We sequenced the whole transcriptomes or exomes of 14 nonepithelial ovarian tumors and noted closely clustered mutations in the region of DICER1 encoding the RNase IIIb domain of DICER1 in four samples. We then sequenced this region of DICER1 in additional ovarian tumors and in certain other tumors and queried the effect of the mutations on the enzymatic activity of DICER1 using in vitro RNA cleavage assays. RESULTS DICER1 mutations in the RNase IIIb domain were found in 30 of 102 nonepithelial ovarian tumors (29%), predominantly in Sertoli-Leydig cell tumors (26 of 43, or 60%), including 4 tumors with additional germline DICER1 mutations. These mutations were restricted to codons encoding metal-binding sites within the RNase IIIb catalytic centers, which are critical for microRNA interaction and cleavage, and were somatic in all 16 samples in which germline DNA was available for testing. We also detected mutations in 1 of 14 nonseminomatous testicular germ-cell tumors, in 2 of 5 embryonal rhabdomyosarcomas, and in 1 of 266 epithelial ovarian and endometrial carcinomas. The mutant DICER1 proteins had reduced RNase IIIb activity but retained RNase IIIa activity. CONCLUSIONS Somatic missense mutations affecting the RNase IIIb domain of DICER1 are common in nonepithelial ovarian tumors. These mutations do not obliterate DICER1 function but alter it in specific cell types, a novel mechanism through which perturbation of microRNA processing may be oncogenic. (Funded by the Terry Fox Research Institute and others.).


The Journal of Pathology | 2013

Distinct evolutionary trajectories of primary high-grade serous ovarian cancers revealed through spatial mutational profiling

Ali Bashashati; Gavin Ha; Alicia A. Tone; Jiarui Ding; Leah M Prentice; Andrew Roth; Jamie Rosner; Karey Shumansky; Steve E. Kalloger; Janine Senz; Winnie Yang; Melissa K. McConechy; Nataliya Melnyk; Michael S. Anglesio; Margaret Luk; Kane Tse; Thomas Zeng; Richard G. Moore; Yongjun Zhao; Marco A. Marra; Blake Gilks; Stephen Yip; David Huntsman; Jessica N. McAlpine; Sohrab P. Shah

High‐grade serous ovarian cancer (HGSC) is characterized by poor outcome, often attributed to the emergence of treatment‐resistant subclones. We sought to measure the degree of genomic diversity within primary, untreated HGSCs to examine the natural state of tumour evolution prior to therapy. We performed exome sequencing, copy number analysis, targeted amplicon deep sequencing and gene expression profiling on 31 spatially and temporally separated HGSC tumour specimens (six patients), including ovarian masses, distant metastases and fallopian tube lesions. We found widespread intratumoural variation in mutation, copy number and gene expression profiles, with key driver alterations in genes present in only a subset of samples (eg PIK3CA, CTNNB1, NF1). On average, only 51.5% of mutations were present in every sample of a given case (range 10.2–91.4%), with TP53 as the only somatic mutation consistently present in all samples. Complex segmental aneuploidies, such as whole‐genome doubling, were present in a subset of samples from the same individual, with divergent copy number changes segregating independently of point mutation acquisition. Reconstruction of evolutionary histories showed one patient with mixed HGSC and endometrioid histology, with common aetiologic origin in the fallopian tube and subsequent selection of different driver mutations in the histologically distinct samples. In this patient, we observed mixed cell populations in the early fallopian tube lesion, indicating that diversity arises at early stages of tumourigenesis. Our results revealed that HGSCs exhibit highly individual evolutionary trajectories and diverse genomic tapestries prior to therapy, exposing an essential biological characteristic to inform future design of personalized therapeutic solutions and investigation of drug‐resistance mechanisms.


Bioinformatics | 2010

SNVMix: predicting single nucleotide variants from next-generation sequencing of tumors

Rodrigo Goya; Mark Sun; Ryan D. Morin; Gillian Leung; Gavin Ha; Kimberley C. Wiegand; Janine Senz; Anamaria Crisan; Marco A. Marra; Martin Hirst; David Huntsman; Kevin P. Murphy; Sam Aparicio; Sohrab P. Shah

Motivation: Next-generation sequencing (NGS) has enabled whole genome and transcriptome single nucleotide variant (SNV) discovery in cancer. NGS produces millions of short sequence reads that, once aligned to a reference genome sequence, can be interpreted for the presence of SNVs. Although tools exist for SNV discovery from NGS data, none are specifically suited to work with data from tumors, where altered ploidy and tumor cellularity impact the statistical expectations of SNV discovery. Results: We developed three implementations of a probabilistic Binomial mixture model, called SNVMix, designed to infer SNVs from NGS data from tumors to address this problem. The first models allelic counts as observations and infers SNVs and model parameters using an expectation maximization (EM) algorithm and is therefore capable of adjusting to deviation of allelic frequencies inherent in genomically unstable tumor genomes. The second models nucleotide and mapping qualities of the reads by probabilistically weighting the contribution of a read/nucleotide to the inference of a SNV based on the confidence we have in the base call and the read alignment. The third combines filtering out low-quality data in addition to probabilistic weighting of the qualities. We quantitatively evaluated these approaches on 16 ovarian cancer RNASeq datasets with matched genotyping arrays and a human breast cancer genome sequenced to >40× (haploid) coverage with ground truth data and show systematically that the SNVMix models outperform competing approaches. Availability: Software and data are available at http://compbio.bccrc.ca Contact: [email protected] Supplemantary information: Supplementary data are available at Bioinformatics online.


Cancer Discovery | 2016

Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting

Andrew J. Aguirre; Robin M. Meyers; Barbara A. Weir; Francisca Vazquez; Cheng-Zhong Zhang; Uri Ben-David; April Cook; Gavin Ha; William F. Harrington; Mihir Doshi; Maria Kost-Alimova; Stanley Gill; Han Xu; Levi D. Ali; Guozhi Jiang; Sasha Pantel; Yenarae Lee; Amy Goodale; Andrew D. Cherniack; Coyin Oh; Gregory V. Kryukov; Glenn S. Cowley; Levi A. Garraway; Kimberly Stegmaier; Charles W. M. Roberts; Todd R. Golub; Matthew Meyerson; David E. Root; Aviad Tsherniak; William C. Hahn

UNLABELLED The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest. By examining single-guide RNAs that map to multiple genomic sites, we found that this cell response to CRISPR/Cas9 editing correlated strongly with the number of target loci. These observations indicate that genome targeting by CRISPR/Cas9 elicits a gene-independent antiproliferative cell response. This effect has important practical implications for the interpretation of CRISPR/Cas9 screening data and confounds the use of this technology for the identification of essential genes in amplified regions. SIGNIFICANCE We found that the number of CRISPR/Cas9-induced DNA breaks dictates a gene-independent antiproliferative response in cells. These observations have practical implications for using CRISPR/Cas9 to interrogate cancer gene function and illustrate that cancer cells are highly sensitive to site-specific DNA damage, which may provide a path to novel therapeutic strategies. Cancer Discov; 6(8); 914-29. ©2016 AACR.See related commentary by Sheel and Xue, p. 824See related article by Munoz et al., p. 900This article is highlighted in the In This Issue feature, p. 803.


Bioinformatics | 2012

JointSNVMix: a probabilistic model for accurate detection of somatic mutations in normal/tumour paired next-generation sequencing data.

Andrew Roth; Jiarui Ding; Ryan D. Morin; Anamaria Crisan; Gavin Ha; Ryan Giuliany; Ali Bashashati; Martin Hirst; Gulisa Turashvili; Arusha Oloumi; Marco A. Marra; Samuel Aparicio; Sohrab P. Shah

Motivation: Identification of somatic single nucleotide variants (SNVs) in tumour genomes is a necessary step in defining the mutational landscapes of cancers. Experimental designs for genome-wide ascertainment of somatic mutations now routinely include next-generation sequencing (NGS) of tumour DNA and matched constitutional DNA from the same individual. This allows investigators to control for germline polymorphisms and distinguish somatic mutations that are unique to the tumour, thus reducing the burden of labour-intensive and expensive downstream experiments needed to verify initial predictions. In order to make full use of such paired datasets, computational tools for simultaneous analysis of tumour–normal paired sequence data are required, but are currently under-developed and under-represented in the bioinformatics literature. Results: In this contribution, we introduce two novel probabilistic graphical models called JointSNVMix1 and JointSNVMix2 for jointly analysing paired tumour–normal digital allelic count data from NGS experiments. In contrast to independent analysis of the tumour and normal data, our method allows statistical strength to be borrowed across the samples and therefore amplifies the statistical power to identify and distinguish both germline and somatic events in a unified probabilistic framework. Availability: The JointSNVMix models and four other models discussed in the article are part of the JointSNVMix software package available for download at http://compbio.bccrc.ca Contact: [email protected] Supplementary information:Supplementary data are available at Bioinformatics online.

Collaboration


Dive into the Gavin Ha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco A. Marra

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Huntsman

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge