Gavin J. D. Smith
National University of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gavin J. D. Smith.
Nature | 2009
Gavin J. D. Smith; Dhanasekaran Vijaykrishna; Justin Bahl; Samantha Lycett; Michael Worobey; Oliver G. Pybus; Siu Kit Ma; C. L. Cheung; Jayna Raghwani; Samir Bhatt; J. S. Malik Peiris; Yi Guan; Andrew Rambaut
In March and early April 2009, a new swine-origin influenza A (H1N1) virus (S-OIV) emerged in Mexico and the United States. During the first few weeks of surveillance, the virus spread worldwide to 30 countries (as of May 11) by human-to-human transmission, causing the World Health Organization to raise its pandemic alert to level 5 of 6. This virus has the potential to develop into the first influenza pandemic of the twenty-first century. Here we use evolutionary analysis to estimate the timescale of the origins and the early development of the S-OIV epidemic. We show that it was derived from several viruses circulating in swine, and that the initial transmission to humans occurred several months before recognition of the outbreak. A phylogenetic estimate of the gaps in genetic surveillance indicates a long period of unsampled ancestry before the S-OIV outbreak, suggesting that the reassortment of swine lineages may have occurred years before emergence in humans, and that the multiple genetic ancestry of S-OIV is not indicative of an artificial origin. Furthermore, the unsampled history of the epidemic means that the nature and location of the genetically closest swine viruses reveal little about the immediate origin of the epidemic, despite the fact that we included a panel of closely related and previously unpublished swine influenza isolates. Our results highlight the need for systematic surveillance of influenza in swine, and provide evidence that the mixing of new genetic elements in swine can result in the emergence of viruses with pandemic potential in humans.
Nature Medicine | 2006
Menno D. de Jong; Cameron P. Simmons; Tran Tan Thanh; Vo Minh Hien; Gavin J. D. Smith; Tran Nguyen Bich Chau; Dang Minh Hoang; Nguyen Van Vinh Chau; Truong Huu Khanh; Vo Cong Dong; Phan Tu Qui; Bach Van Cam; Do Quang Ha; Yi Guan; J. S. Malik Peiris; Nguyen Tran Chinh; Tran Tinh Hien; Jeremy Farrar
Avian influenza A (H5N1) viruses cause severe disease in humans, but the basis for their virulence remains unclear. In vitro and animal studies indicate that high and disseminated viral replication is important for disease pathogenesis. Laboratory experiments suggest that virus-induced cytokine dysregulation may contribute to disease severity. To assess the relevance of these findings for human disease, we performed virological and immunological studies in 18 individuals with H5N1 and 8 individuals infected with human influenza virus subtypes. Influenza H5N1 infection in humans is characterized by high pharyngeal virus loads and frequent detection of viral RNA in rectum and blood. Viral RNA in blood was present only in fatal H5N1 cases and was associated with higher pharyngeal viral loads. We observed low peripheral blood T-lymphocyte counts and high chemokine and cytokine levels in H5N1-infected individuals, particularly in those who died, and these correlated with pharyngeal viral loads. Genetic characterization of H5N1 viruses revealed mutations in the viral polymerase complex associated with mammalian adaptation and virulence. Our observations indicate that high viral load, and the resulting intense inflammatory responses, are central to influenza H5N1 pathogenesis. The focus of clinical management should be on preventing this intense cytokine response, by early diagnosis and effective antiviral treatment.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Gavin J. D. Smith; Justin Bahl; Dhanasekaran Vijaykrishna; J. X. Zhang; Leo L.M. Poon; Honglin Chen; Robert G. Webster; J. S. Malik Peiris; Yi Guan
Pandemic influenza viruses cause significant mortality in humans. In the 20th century, 3 influenza viruses caused major pandemics: the 1918 H1N1 virus, the 1957 H2N2 virus, and the 1968 H3N2 virus. These pandemics were initiated by the introduction and successful adaptation of a novel hemagglutinin subtype to humans from an animal source, resulting in antigenic shift. Despite global concern regarding a new pandemic influenza, the emergence pathway of pandemic strains remains unknown. Here we estimated the evolutionary history and inferred date of introduction to humans of each of the genes for all 20th century pandemic influenza strains. Our results indicate that genetic components of the 1918 H1N1 pandemic virus circulated in mammalian hosts, i.e., swine and humans, as early as 1911 and was not likely to be a recently introduced avian virus. Phylogenetic relationships suggest that the A/Brevig Mission/1/1918 virus (BM/1918) was generated by reassortment between mammalian viruses and a previously circulating human strain, either in swine or, possibly, in humans. Furthermore, seasonal and classic swine H1N1 viruses were not derived directly from BM/1918, but their precursors co-circulated during the pandemic. Mean estimates of the time of most recent common ancestor also suggest that the H2N2 and H3N2 pandemic strains may have been generated through reassortment events in unknown mammalian hosts and involved multiple avian viruses preceding pandemic recognition. The possible generation of pandemic strains through a series of reassortment events in mammals over a period of years before pandemic recognition suggests that appropriate surveillance strategies for detection of precursor viruses may abort future pandemics.
Science | 2010
Dhanasekaran Vijaykrishna; Leo Lit Man Poon; Huachen Zhu; S. K. Ma; Olive Tin-Wai Li; C. L. Cheung; Gavin J. D. Smith; J. S. M. Peiris; Yi Guan
Surveillance of pigs is important for tracking reassortment and emergence of influenza A viruses. The emergence of pandemic H1N1/2009 influenza demonstrated that pandemic viruses could be generated in swine. Subsequent reintroduction of H1N1/2009 to swine has occurred in multiple countries. Through systematic surveillance of influenza viruses in swine from a Hong Kong abattoir, we characterize a reassortant progeny of H1N1/2009 with swine viruses. Swine experimentally infected with this reassortant developed mild illness and transmitted infection to contact animals. Continued reassortment of H1N1/2009 with swine influenza viruses could produce variants with transmissibility and altered virulence for humans. Global systematic surveillance of influenza viruses in swine is warranted.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Gavin J. D. Smith; Xiaohui Fan; Jun Wang; Kenneth S. M. Li; K. Qin; J. X. Zhang; Dhanasekaran Vijaykrishna; C. L. Cheung; Kai Huang; Jane M. Rayner; J. S. M. Peiris; Honglin Chen; Robert G. Webster; Yi Guan
The development of highly pathogenic avian H5N1 influenza viruses in poultry in Eurasia accompanied with the increase in human infection in 2006 suggests that the virus has not been effectively contained and that the pandemic threat persists. Updated virological and epidemiological findings from our market surveillance in southern China demonstrate that H5N1 influenza viruses continued to be panzootic in different types of poultry. Genetic and antigenic analyses revealed the emergence and predominance of a previously uncharacterized H5N1 virus sublineage (Fujian-like) in poultry since late 2005. Viruses from this sublineage gradually replaced those multiple regional distinct sublineages and caused recent human infection in China. These viruses have already transmitted to Hong Kong, Laos, Malaysia, and Thailand, resulting in a new transmission and outbreak wave in Southeast Asia. Serological studies suggest that H5N1 seroconversion in market poultry is low and that vaccination may have facilitated the selection of the Fujian-like sublineage. The predominance of this virus over a large geographical region within a short period directly challenges current disease control measures.
The Journal of Infectious Diseases | 2006
C. L. Cheung; Jane M. Rayner; Gavin J. D. Smith; Pui Wang; T. S. P. Naipospos; J. X. Zhang; Kwok-Yung Yuen; Robert G. Webster; J. S. Malik Peiris; Yi Guan; Honglin Chen
We examined the distribution of genetic mutations associated with resistance to the M2 ion channel-blocking adamantane derivatives, amantadine and rimantadine, among H5N1 viruses isolated in Vietnam, Thailand, Cambodia, Indonesia, Hong Kong, and China. More than 95% of the viruses isolated in Vietnam and Thailand contained resistance mutations, but resistant mutants were less commonly isolated in Indonesia (6.3% of isolates) and China (8.9% of isolates), where human infection was recently reported. The dual mutation motif Leu26Ile-Ser31Asn (leucine-->isoleucine at aa 26 and serine-->asparagine at aa 31) was found almost exclusively in all resistant isolates from Vietnam, Thailand, and Cambodia, suggesting the biological selection of these mutations.
Journal of Virology | 2007
Dhanasekaran Vijaykrishna; Gavin J. D. Smith; J. X. Zhang; J. S. M. Peiris; Honglin Chen; Yi Guan
ABSTRACT Although many novel members of the Coronaviridae have recently been recognized in different species, the ecology of coronaviruses has not been established. Our study indicates that bats harbor a much wider diversity of coronaviruses than any other animal species. Dating of different coronavirus lineages suggests that bat coronaviruses are older than those recognized in other animals and that the human severe acute respiratory syndrome (SARS) coronavirus was directly derived from viruses from wild animals in wet markets of southern China. Furthermore, the most closely related bat and SARS coronaviruses diverged in 1986, an estimated divergence time of 17 years prior to the outbreak, suggesting that there may have been transmission via an unknown intermediate host. Analysis of lineage-specific selection pressure also indicated that only SARS coronaviruses in civets and humans were under significant positive selection, also demonstrating a recent interspecies transmission. Analysis of population dynamics revealed that coronavirus populations in bats have constant population growth, while viruses from all other hosts show epidemic-like increases in population. These results indicate that diverse coronaviruses are endemic in different bat species, with repeated introductions to other animals and occasional establishment in other species. Our findings suggest that bats are likely the natural hosts for all presently known coronavirus lineages and that all coronaviruses recognized in other species were derived from viruses residing in bats. Further surveillance of bat and other animal populations is needed to fully describe the ecology and evolution of this virus family.
Nature | 2011
Dhanasekaran Vijaykrishna; Gavin J. D. Smith; Oliver G. Pybus; Huachen Zhu; Samir Bhatt; Leo L.M. Poon; Steven Riley; Justin Bahl; Siu K. Ma; Chung L. Cheung; Ranawaka A.P.M. Perera; Honglin Chen; Kennedy F. Shortridge; Richard J. Webby; Robert G. Webster; Yi Guan; J. S. Malik Peiris
Swine influenza A viruses (SwIV) cause significant economic losses in animal husbandry as well as instances of human disease and occasionally give rise to human pandemics, including that caused by the H1N1/2009 virus. The lack of systematic and longitudinal influenza surveillance in pigs has hampered attempts to reconstruct the origins of this pandemic. Most existing swine data were derived from opportunistic samples collected from diseased pigs in disparate geographical regions, not from prospective studies in defined locations, hence the evolutionary and transmission dynamics of SwIV are poorly understood. Here we quantify the epidemiological, genetic and antigenic dynamics of SwIV in Hong Kong using a data set of more than 650 SwIV isolates and more than 800 swine sera from 12 years of systematic surveillance in this region, supplemented with data stretching back 34 years. Intercontinental virus movement has led to reassortment and lineage replacement, creating an antigenically and genetically diverse virus population whose dynamics are quantitatively different from those previously observed for human influenza viruses. Our findings indicate that increased antigenic drift is associated with reassortment events and offer insights into the emergence of influenza viruses with epidemic potential in swine and humans.
PLOS Pathogens | 2008
Dhanasekaran Vijaykrishna; Justin Bahl; S Riley; Lian Duan; J. X. Zhang; Honglin Chen; J. S. Malik Peiris; Gavin J. D. Smith; Yi Guan
The highly pathogenic avian influenza (HPAI) H5N1 virus lineage has undergone extensive genetic reassortment with viruses from different sources to produce numerous H5N1 genotypes, and also developed into multiple genetically distinct sublineages in China. From there, the virus has spread to over 60 countries. The ecological success of this virus in diverse species of both poultry and wild birds with frequent introduction to humans suggests that it is a likely source of the next human pandemic. Therefore, the evolutionary and ecological characteristics of its emergence from wild birds into poultry are of considerable interest. Here, we apply the latest analytical techniques to infer the early evolutionary dynamics of H5N1 virus in the population from which it emerged (wild birds and domestic poultry). By estimating the time of most recent common ancestors of each gene segment, we show that the H5N1 prototype virus was likely introduced from wild birds into poultry as a non-reassortant low pathogenic avian influenza H5N1 virus and was not generated by reassortment in poultry. In contrast, more recent H5N1 genotypes were generated locally in aquatic poultry after the prototype virus (A/goose/Guangdong/1/96) introduction occurred, i.e., they were not a result of additional emergence from wild birds. We show that the H5N1 virus was introduced into Indonesia and Vietnam 3–6 months prior to detection of the first outbreaks in those countries. Population dynamics analyses revealed a rapid increase in the genetic diversity of A/goose/Guangdong/1/96 lineage viruses from mid-1999 to early 2000. Our results suggest that the transmission of reassortant viruses through the mixed poultry population in farms and markets in China has selected HPAI H5N1 viruses that are well adapted to multiple hosts and reduced the interspecies transmission barrier of those viruses.
Journal of Virology | 2007
Lian Duan; Laura Campitelli; Xiaohui Fan; Y. H. C. Leung; Dhanasekaran Vijaykrishna; Jing Zhang; Isabella Donatelli; Mauro Delogu; Kenneth S. M. Li; Emanuela Foni; Chiara Chiapponi; Wai-Lan Wu; H. Kai; Robert G. Webster; Kennedy F. Shortridge; J. S. M. Peiris; Gavin J. D. Smith; Honglin Chen; Yi Guan
ABSTRACT Highly pathogenic avian influenza (HPAI) H5N1 viruses are now endemic in many Asian countries, resulting in repeated outbreaks in poultry and increased cases of human infection. The immediate precursor of these HPAI viruses is believed to be A/goose/Guangdong/1/96 (Gs/GD)-like H5N1 HPAI viruses first detected in Guangdong, China, in 1996. From 2000 onwards, many novel reassortant H5N1 influenza viruses or genotypes have emerged in southern China. However, precursors of the Gs/GD-like viruses and their subsequent reassortants have not been fully determined. Here we characterize low-pathogenic avian influenza (LPAI) H5 subtype viruses isolated from poultry and migratory birds in southern China and Europe from the 1970s to the 2000s. Phylogenetic analyses revealed that Gs/GD-like virus was likely derived from an LPAI H5 virus in migratory birds. However, its variants arose from multiple reassortments between Gs/GD-like virus and viruses from migratory birds or with those Eurasian viruses isolated in the 1970s. It is of note that unlike HPAI H5N1 viruses, those recent LPAI H5 viruses have not become established in aquatic or terrestrial poultry. Phylogenetic analyses revealed the dynamic nature of the influenza virus gene pool in Eurasia with repeated transmissions between the eastern and western extremities of the continent. The data also show reassortment between influenza viruses from domestic and migratory birds in this region that has contributed to the expanded diversity of the influenza virus gene pool among poultry in Eurasia.
Collaboration
Dive into the Gavin J. D. Smith's collaboration.
National Center for Immunization and Respiratory Diseases
View shared research outputs