Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gavin MacBeath is active.

Publication


Featured researches published by Gavin MacBeath.


Nature Genetics | 2002

Protein microarrays and proteomics

Gavin MacBeath

The system-wide study of proteins presents an exciting challenge in this information-rich age of whole-genome biology. Although traditional investigations have yielded abundant information about individual proteins, they have been less successful at providing us with an integrated understanding of biological systems. The promise of proteomics is that, by studying many components simultaneously, we will learn how proteins interact with each other, as well as with non-proteinaceous molecules, to control complex processes in cells, tissues and even whole organisms. Here, I discuss the role of microarray technology in this burgeoning area.


Nature | 2006

A quantitative protein interaction network for the ErbB receptors using protein microarrays

Richard B. Jones; Andrew Gordus; Jordan A Krall; Gavin MacBeath

Although epidermal growth factor receptor (EGFR; also called ErbB1) and its relatives initiate one of the most well-studied signalling networks, there is not yet a genome-wide view of even the earliest step in this pathway: recruitment of proteins to the activated receptors. Here we use protein microarrays comprising virtually every Src homology 2 (SH2) and phosphotyrosine binding (PTB) domain encoded in the human genome to measure the equilibrium dissociation constant of each domain for 61 peptides representing physiological sites of tyrosine phosphorylation on the four ErbB receptors. This involved 77,592 independent biochemical measurements and provided a quantitative protein interaction network that reveals many new interactions, including ones that fall outside of our current view of domain selectivity. By slicing through the network at different affinity thresholds, we found surprising differences between the receptors. Most notably, EGFR and ErbB2 become markedly more promiscuous as the threshold is lowered, whereas ErbB3 does not. Because EGFR and ErbB2 are overexpressed in many human cancers, our results suggest that the extent to which promiscuity changes with protein concentration may contribute to the oncogenic potential of receptor tyrosine kinases, and perhaps other signalling proteins as well.


Cell | 2012

Sequential Application of Anticancer Drugs Enhances Cell Death by Rewiring Apoptotic Signaling Networks

Michael J. Lee; Albert S. Ye; Alexandra K. Gardino; Anne Margriet Heijink; Peter K. Sorger; Gavin MacBeath; Michael B. Yaffe

Crosstalk and complexity within signaling pathways and their perturbation by oncogenes limit component-by-component approaches to understanding human disease. Network analysis of how normal and oncogenic signaling can be rewired by drugs may provide opportunities to target tumors with high specificity and efficacy. Using targeted inhibition of oncogenic signaling pathways, combined with DNA-damaging chemotherapy, we report that time-staggered EGFR inhibition, but not simultaneous coadministration, dramatically sensitizes a subset of triple-negative breast cancer cells to genotoxic drugs. Systems-level analysis-using high-density time-dependent measurements of signaling networks, gene expression profiles, and cell phenotypic responses in combination with mathematical modeling-revealed an approach for altering the intrinsic state of the cell through dynamic rewiring of oncogenic signaling pathways. This process converts these cells to a less tumorigenic state that is more susceptible to DNA damage-induced cell death by reactivation of an extrinsic apoptotic pathway whose function is suppressed in the oncogene-addicted state.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells

Alex K. Shalek; Jacob T. Robinson; Ethan S. Karp; Jin Seok Lee; Dae-Ro Ahn; Myung-Han Yoon; Amy Sutton; Marsela Jorgolli; Rona S. Gertner; Taranjit S. Gujral; Gavin MacBeath; Eun Gyeong Yang; Hongkun Park

A generalized platform for introducing a diverse range of biomolecules into living cells in high-throughput could transform how complex cellular processes are probed and analyzed. Here, we demonstrate spatially localized, efficient, and universal delivery of biomolecules into immortalized and primary mammalian cells using surface-modified vertical silicon nanowires. The method relies on the ability of the silicon nanowires to penetrate a cell’s membrane and subsequently release surface-bound molecules directly into the cell’s cytosol, thus allowing highly efficient delivery of biomolecules without chemical modification or viral packaging. This modality enables one to assess the phenotypic consequences of introducing a broad range of biological effectors (DNAs, RNAs, peptides, proteins, and small molecules) into almost any cell type. We show that this platform can be used to guide neuronal progenitor growth with small molecules, knock down transcript levels by delivering siRNAs, inhibit apoptosis using peptides, and introduce targeted proteins to specific organelles. We further demonstrate codelivery of siRNAs and proteins on a single substrate in a microarray format, highlighting this technology’s potential as a robust, monolithic platform for high-throughput, miniaturized bioassays.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Profiling receptor tyrosine kinase activation by using Ab microarrays

Ulrik Nielsen; Mike H. Cardone; Anthony J. Sinskey; Gavin MacBeath; Peter K. Sorger

Signal transduction in mammalian cells is mediated by complex networks of interacting proteins. Understanding these networks at a circuit level requires devices to measure the amounts and activities of multiple proteins in a rapid and accurate manner. Ab microarrays have previously been applied to the quantification of labeled recombinant proteins and proteins in serum. The development of methods to analyze intracellular signaling molecules on microarrays would make Ab arrays widely useful in systems biology. Here we describe the fabrication of multiplex Ab arrays sensitive to the amounts and modification states of signal transduction proteins in crude cell lysates and the integration of these arrays with 96-well microtiter plate technology to create microarrays in microplates. We apply the Ab arrays to monitoring the activation, uptake, and signaling of ErbB receptor tyrosine kinases in human tumor cell lines. Data obtained from multicolor ratiometric microarrays correlate well with data obtained by using traditional approaches, but the arrays are faster and simpler to use. The integration of microplate and microarray methods for crude cell lysates should make it possible to identify and analyze small molecule inhibitors of signal transduction processes with unprecedented speed and precision. We demonstrate the future potential of this approach by characterizing the action of the epidermal growth factor receptor inhibitor PD153035 on cells by using Ab arrays; direct scale-up to array-based screening in 96- and 384-well plates should allow small molecules to be identified with specific inhibitory profiles against a signaling network.


Nature Biotechnology | 2008

Predicting PDZ domain-peptide interactions from primary sequences.

Jiunn R Chen; Bryan H Chang; John E. Allen; Michael Stiffler; Gavin MacBeath

PDZ domains constitute one of the largest families of interaction domains and function by binding the C termini of their target proteins. Using Bayesian estimation, we constructed a three-dimensional extension of a position-specific scoring matrix that predicts to which peptides a PDZ domain will bind, given the primary sequences of the PDZ domain and the peptides. The model, which was trained using interaction data from 82 PDZ domains and 93 peptides encoded in the mouse genome, successfully predicts interactions involving other mouse PDZ domains, as well as PDZ domains from Drosophila melanogaster and, to a lesser extent, PDZ domains from Caenorhabditis elegans. The model also predicts the differential effects of point mutations in peptide ligands on their PDZ domain–binding affinities. Overall, we show that our approach captures, in a single model, the binding selectivity of the PDZ domain family.


Cell | 2014

A Noncanonical Frizzled2 Pathway Regulates Epithelial-Mesenchymal Transition and Metastasis

Taranjit S. Gujral; Marina Chan; Leonid Peshkin; Peter K. Sorger; Marc W. Kirschner; Gavin MacBeath

Wnt signaling plays a critical role in embryonic development, and genetic aberrations in this network have been broadly implicated in colorectal cancer. We find that the Wnt receptor Frizzled2 (Fzd2) and its ligands Wnt5a/b are elevated in metastatic liver, lung, colon, and breast cancer cell lines and in high-grade tumors and that their expression correlates with markers of epithelial-mesenchymal transition (EMT). Pharmacologic and genetic perturbations reveal that Fzd2 drives EMT and cell migration through a previously unrecognized, noncanonical pathway that includes Fyn and Stat3. A gene signature regulated by this pathway predicts metastasis and overall survival in patients. We have developed an antibody to Fzd2 that reduces cell migration and invasion and inhibits tumor growth and metastasis in xenografts. We propose that targeting this pathway could provide benefit for patients with tumors expressing high levels of Fzd2 and Wnt5a/b.


Nature Reviews Molecular Cell Biology | 2006

Collecting and organizing systematic sets of protein data

John G. Albeck; Gavin MacBeath; Forest M. White; Peter K. Sorger; Douglas A. Lauffenburger; Suzanne Gaudet

Systems biology, particularly of mammalian cells, is data starved. However, technologies are now in place to obtain rich data, in a form suitable for model construction and validation, that describes the activities, states and locations of cell-signalling molecules. The key is to use several measurement technologies simultaneously and, recognizing each of their limits, to assemble a self-consistent compendium of systematic data.


Nature Methods | 2006

State-based discovery: a multidimensional screen for small-molecule modulators of EGF signaling

Mark Sevecka; Gavin MacBeath

As an alternative to conventional, target-oriented drug discovery, we report a strategy that identifies compounds on the basis of the state that they induce in a signaling network. Immortalized human cells are grown in microtiter plates and treated with compounds from a small-molecule library. The target network is then activated and lysates derived from each sample are arrayed onto glass-supported nitrocellulose pads. By probing these microarrays with antibodies that report on the abundance or phosphorylation state of selected proteins, a global picture of the target network is obtained. As proof of concept, we screened 84 kinase and phosphatase inhibitors for their ability to induce different states in the ErbB signaling network. We observed functional connections between proteins that match our understanding of ErbB signaling, indicating that state-based screens can be used to define the topology of signaling networks. Additionally, compounds sort according to the multidimensional phenotypes they induce, suggesting that state-based screens may inform efforts to identify the targets of biologically active small molecules.


Nature Protocols | 2010

Quantifying protein–protein interactions in high throughput using protein domain microarrays

Alexis Kaushansky; John E. Allen; Andrew Gordus; Michael A Stiffler; Ethan S. Karp; Bryan H Chang; Gavin MacBeath

Protein microarrays provide an efficient way to identify and quantify protein–protein interactions in high throughput. One drawback of this technique is that proteins show a broad range of physicochemical properties and are often difficult to produce recombinantly. To circumvent these problems, we have focused on families of protein interaction domains. Here we provide protocols for constructing microarrays of protein interaction domains in individual wells of 96-well microtiter plates, and for quantifying domain–peptide interactions in high throughput using fluorescently labeled synthetic peptides. As specific examples, we will describe the construction of microarrays of virtually every human Src homology 2 (SH2) and phosphotyrosine binding (PTB) domain, as well as microarrays of mouse PDZ domains, all produced recombinantly in Escherichia coli. For domains that mediate high-affinity interactions, such as SH2 and PTB domains, equilibrium dissociation constants (KDs) for their peptide ligands can be measured directly on arrays by obtaining saturation binding curves. For weaker binding domains, such as PDZ domains, arrays are best used to identify candidate interactions, which are then retested and quantified by fluorescence polarization. Overall, protein domain microarrays provide the ability to rapidly identify and quantify protein–ligand interactions with minimal sample consumption. Because entire domain families can be interrogated simultaneously, they provide a powerful way to assess binding selectivity on a proteome-wide scale and provide an unbiased perspective on the connectivity of protein–protein interaction networks.

Collaboration


Dive into the Gavin MacBeath's collaboration.

Top Co-Authors

Avatar

William Kubasek

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Victor Moyo

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Gabriela Garcia

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akos Czibere

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge