Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gavin S. Walker is active.

Publication


Featured researches published by Gavin S. Walker.


Journal of the American Chemical Society | 2009

High Capacity Hydrogen Adsorption in Cu(II) Tetracarboxylate Framework Materials: The Role of Pore Size, Ligand Functionalization, and Exposed Metal Sites

Xiang Lin; Irvin Telepeni; Alexander J. Blake; Anne Dailly; Craig M. Brown; Jason M. Simmons; Marco Zoppi; Gavin S. Walker; K. Mark Thomas; Timothy J. Mays; Peter Hubberstey; Neil R. Champness; Martin Schröder

A series of isostructural metal-organic framework polymers of composition [Cu2(L)(H2O)2] (L= tetracarboxylate ligands), denoted NOTT-nnn, has been synthesized and characterized. Single crystal X-ray structures confirm the complexes to contain binuclear Cu(II) paddlewheel nodes each bridged by four carboxylate centers to give a NbO-type network of 64.82 topology. These complexes are activated by solvent exchange with acetone coupled to heating cycles under vacuum to afford the desolvated porous materials NOTT-100 to NOTT-109. These incorporate a vacant coordination site at each Cu(II) center and have large pore volumes that contribute to the observed high H2 adsorption. Indeed, NOTT-103 at 77 K and 60 bar shows a very high total H2 adsorption of 77.8 mg g(-)- equivalent to 7.78 wt% [wt% = (weight of adsorbed H2)/(weight of host material)] or 7.22 wt% [wt% = 100(weight of adsorbed H2)/(weight of host material + weight of adsorbed H2)]. Neutron powder diffraction studies on NOTT-101 reveal three adsorption sites for this material: at the exposed Cu(II) coordination site, at the pocket formed by three {Cu2} paddle wheels, and at the cusp of three phenyl rings. Systematic virial analysis of the H2 isotherms suggests that the H2 binding energies at these sites are very similar and the differences are smaller than 1.0 kJ mol-1, although the adsorption enthalpies for H2 at the exposed Cu(II) site are significantly affected by pore metrics. Introducing methyl groups or using kinked ligands to create smaller pores can enhance the isosteric heat of adsorption and improve H2 adsorption. However, although increasing the overlap of potential energy fields of pore walls increases the heat of H2 adsorption at low pressure, it may be detrimental to the overall adsorption capacity by reducing the pore volume.


Nature Chemistry | 2009

Cation-induced kinetic trapping and enhanced hydrogen adsorption in a modulated anionic metal–organic framework

Sihai Yang; Xiang Lin; Alexander J. Blake; Gavin S. Walker; Peter Hubberstey; Neil R. Champness; Martin Schröder

Metal–organic frameworks (MOFs)—microporous materials constructed by bridging metal centres with organic ligands—show promise for applications in hydrogen storage, which is a key challenge in the development of the ‘hydrogen economy’. Their adsorption capacities, however, have remained insufficient for practical applications, and thus strategies to enhance hydrogen–MOF interactions are required. Here we describe an anionic MOF material built from In(iii) centres and tetracarboxylic acid ligands (H4L) in which kinetic trapping behaviour—where hydrogen is adsorbed at high pressures but not released immediately on lowering the pressure—is modulated by guest cations. With piperazinium dications in its pores, the framework exhibits hysteretic hydrogen adsorption. On exchange of these dications with lithium cations, no hysteresis is seen, but instead there is an enhanced adsorption capacity coupled to an increase in the isosteric heat of adsorption. This is rationalized by the different locations of the cations within the pores, determined with precision by X-ray crystallography. Porous metal–organic frameworks are promising for hydrogen storage applications, but adsorption capacities have remained too low for practical use. Now, the adsorption behaviour of such a framework has been modulated by exchanging cations within its pores resulting in either kinetic trapping or enhanced hydrogen affinity.


Journal of the American Chemical Society | 2010

Metal−Organic Polyhedral Frameworks: High H2 Adsorption Capacities and Neutron Powder Diffraction Studies

Yong Yan; Irvin Telepeni; Sihai Yang; Xiang Lin; W. Kockelmann; Anne Dailly; Alexander J. Blake; William Lewis; Gavin S. Walker; David R. Allan; Sarah A. Barnett; Neil R. Champness; Martin Schröder

Neutron powder diffraction experiments on D(2)-loaded NOTT-112 reveal that the axial sites of exposed Cu(II) ions in the smallest cuboctahedral cages are the first, strongest binding sites for D(2) leading to an overall discrimination between the two types of exposed Cu(II) sites at the paddlewheel nodes. Thus, the Cu(II) centers within the cuboctahedral cage are the first sites of D(2) binding with a Cu-D(2) distance of 2.23(1) A.


Chemical Communications | 2007

Twelve-connected porous metal–organic frameworks with high H2 adsorption

Junhua Jia; Xiang Lin; Claire Wilson; Alexander J. Blake; Neil R. Champness; Peter Hubberstey; Gavin S. Walker; Edmund J. Cussen; Martin Schröder

The twelve-connected metal-organic frameworks {[Ni(3)(OH)(L)(3)].n(solv)}(infinity) and {[Fe(3)(O)(L)(3)].n(solv)}(infinity) [LH(2) = pyridine-3,5-bis(phenyl-4-carboxylic acid)] have been prepared and characterised: these materials can be desolvated to form porous materials that show adsorption of H(2) up to 4.15 wt% at 77 K.


Journal of the American Chemical Society | 2009

Hydrogen Storage in High Surface Area Carbons: Experimental Demonstration of the Effects of Nitrogen Doping

Yongde Xia; Gavin S. Walker; David M. Grant; Robert Mokaya

The influence of nitrogen doping on the hydrogen uptake and storage capacity of high surface area carbon materials is presented in this report. To generate suitable study materials, we have exploited the relationship between synthesis conditions and textural properties of zeolite-templated carbons to generate a range of high surface area carbons with similar pore size distribution but which are either N-doped or N-free. For N-doped carbons, the nitrogen content was kept within a narrow range of between 4.7 and 7.7 wt %. The carbon materials, irrespective of whether they were doped or not, exhibited high surface area (1900-3700 m(2)/g) and pore volume (0.99 and 1.88 cm(3)/g), a micropore surface area of 1500-2800 m(2)/g, and a micropore volume of 0.65-1.24 cm(3)/g. The hydrogen uptake varied between 4.1 and 6.9 wt %. We present experimental data that indicates that the effect of N-doping on hydrogen uptake is only apparent when related to the surface area and pore volume associated with micropores rather than total porosity. Furthermore, by considering the isosteric heat of hydrogen adsorption and excess hydrogen uptake on N-free or N-doped carbons, it is shown that N-doping can be beneficial at lower coverage (low hydrogen uptake) but is detrimental at higher coverage (higher hydrogen uptake). The findings are consistent with previous theoretical predictions on the effect of N-doping of carbon on hydrogen uptake. The findings, therefore, add new insights that are useful for the development of carbon materials with enhanced hydrogen storage capacity.


Chemical Communications | 2006

A new dehydrogenation mechanism for reversible multicomponent borohydride systems—The role of Li–Mg alloys

X. B. Yu; David M. Grant; Gavin S. Walker

A new dehydrogenation mechanism for LiBH4-MgH2 mixtures revealed that magnesium destabilised the LiBH(4) resulting in complete dehydrogenation of the borohydride phase and the formation of a Li-Mg alloy.


Acta Biomaterialia | 2008

Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite

Ifty Ahmed; Andrew J. Parsons; Graham Palmer; Jonathan C. Knowles; Gavin S. Walker; C.D. Rudd

Composites comprising a biodegradable polymeric matrix and a bioactive filler show considerable promise in the field of regenerative medicine, and could potentially serve as degradable bone fracture fixation devices, depending on the properties obtained. Therefore, glass fibres from a binary calcium phosphate (50P(2)O(5)+50CaO) glass were used to reinforce polycaprolactone, at two different volume fractions (V(f)). As-drawn, non-treated and heat-treated fibres were assessed. Weight loss, ion release and the initial mechanical properties of the fibres and composites produced have been investigated. Single fibre tensile testing revealed a fibre strength of 474MPa and a tensile modulus of 44GPa. Weibull analysis suggested a scale value of 524. The composites yielded flexural strength and modulus of up to 30MPa and 2.5GPa, respectively. These values are comparable with human trabecular bone. An 8% mass loss was seen for the lower V(f) composite, whereas for the two higher V(f) composites an approximate 20% mass loss was observed over the course of the 5week study. A plateau in the degradation profile at 350h indicated that fibre dissolution was complete at this interval. This assertion was further supported via ion release studies. The leaching of fibres from the composite created a porous structure, including continuous channels within the polymer matrix. This offers further scope for tailoring scaffold development, as cells from the surrounding tissue may be induced to migrate into the resulting porous matrix.


Chemical Communications | 2011

Destabilisation of magnesium hydride by germanium as a new potential multicomponent hydrogen storage system

Gavin S. Walker; Marwa Abbas; David M. Grant; Chima Udeh

MgH(2) has too high an operating temperature for many hydrogen storage applications. However, MgH(2) ball-milled with Ge leads to a thermodynamic destabilisation of >50 kJ mol(-1)(H(2)). This has dramatically reduced the temperature of dehydrogenation to 130 °C, opening up the potential for Mg-based multicomponent systems as hydrogen stores for a range of applications.


Chemistry: A European Journal | 2010

Structures and H2 Adsorption Properties of Porous Scandium Metal-Organic Frameworks

Ilich A. Ibarra; Xiang Lin; Sihai Yang; Alexander J. Blake; Gavin S. Walker; Sarah A. Barnett; David R. Allan; Neil R. Champness; Peter Hubberstey; Martin Schröder

Two new three-dimensional Sc(III) metal-organic frameworks {[Sc(3)O(L(1))(3)(H(2)O)(3)]·Cl(0.5)(OH)(0.5)(DMF)(4)(H(2)O)(3)}(∞) (1) (H(2)L(1)=1,4-benzene-dicarboxylic acid) and {[Sc(3)O(L(2))(2)(H(2)O)(3)](OH)(H(2)O)(5)(DMF)}(∞) (2) (H(3)L(2)=1,3,5-tris(4-carboxyphenyl)benzene) have been synthesised and characterised. The structures of both 1 and 2 incorporate the trinuclear trigonal planar [Sc(3)(O)(O(2)CR)(6)] building block featuring three Sc(III) centres joined by a central μ(3)-O(2-) donor. Each Sc(III) centre is further bound by four oxygen donors from four different bridging carboxylate anions, and a molecule of water located trans to the μ(3)-O(2-) donor completes the six coordination at the metal centre. Frameworks 1 and 2 show high thermal stability with retention of crystallinity up to 350 °C. The desolvated materials 1a and 2a, in which the solvent has been removed from the pores but with water or hydroxide remaining coordinated to Sc(III), show BET surface areas based upon N(2) uptake of 634 and 1233 m(2) g(-1), respectively, and pore volumes calculated from the maximum N(2) adsorption of 0.25 cm(3) g(-1) and 0.62 cm(3) g(-1), respectively. At 20 bar and 78 K, the H(2) isotherms for desolvated 1a and 2a confirm 2.48 and 1.99 wt% total H(2) uptake, respectively. The isosteric heats of adsorption were estimated to be 5.25 and 2.59 kJ mol(-1) at zero surface coverage for 1a and 2a, respectively. Treatment of 2 with acetone followed by thermal desolvation in vacuo generated free metal coordination sites in a new material 2b. Framework 2b shows an enhanced BET surface area of 1511 m(2) g(-1) and a pore volume of 0.76 cm(3) g(-1), with improved H(2) uptake capacity and a higher heat of H(2) adsorption. At 20 bar, H(2) capacity increases from 1.99 wt% in 2a to 2.64 wt% for 2b, and the H(2) adsorption enthalpy rises markedly from 2.59 to 6.90 kJ mol(-1).


Journal of Biomaterials Applications | 2012

Investigation of crystallinity, molecular weight change, and mechanical properties of PLA/PBG bioresorbable composites as bone fracture fixation plates.

Reda M. Felfel; Ifty Ahmed; Andrew J. Parsons; Papia Haque; Gavin S. Walker; C.D. Rudd

In this study, bioresorbable phosphate-based glass (PBG) fibers were used to reinforce poly(lactic acid) (PLA). PLA/PBG random mat (RM) and unidirectional (UD) composites were prepared via laminate stacking and compression molding with fiber volume fractions between 14% and 18%, respectively. The percentage of water uptake and mass change for UD composites were higher than the RM composites and unreinforced PLA. The crystallinity of the unreinforced PLA and composites increased during the first few weeks and then a plateau was seen. XRD analysis detected a crystalline peak at 16.6° in the unreinforced PLA sample after 42 days of immersion in phosphate buffer solution (PBS) at 37°C. The initial flexural strength of RM and UD composites was ∼106 and ∼115 MPa, whilst the modulus was ∼6.7 and ∼9 GPa, respectively. After 95 days immersion in PBS at 37°C, the strength decreased to 48 and 52 MPa, respectively as a result of fiber–matrix interface degradation. There was no significant change in flexural modulus for the UD composites, whilst the RM composites saw a decrease of ∼45%. The molecular weight of PLA alone, RM, and UD composites decreased linearly with time during degradation due to chain scission of the matrix. Short fiber pull-out was seen from SEM micrographs for both RM and UD composites.

Collaboration


Dive into the Gavin S. Walker's collaboration.

Top Co-Authors

Avatar

David M. Grant

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

C.D. Rudd

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fraser Buchanan

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

I.A. Jones

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Ifty Ahmed

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Eoin Cunningham

Queen's University Belfast

View shared research outputs
Researchain Logo
Decentralizing Knowledge