Gaye F. White
University of East Anglia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gaye F. White.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Thomas A. Clarke; Marcus J. Edwards; Andrew J. Gates; Andrea Hall; Gaye F. White; Justin M. Bradley; Catherine L. Reardon; Liang Shi; Alexander S. Beliaev; Matthew J. Marshall; Zheming Wang; Nicholas J. Watmough; James K. Fredrickson; John M. Zachara; Julea N. Butt; David J. Richardson
Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular intercytochrome electron exchange along “nanowire” appendages. We present a 3.2-Å crystal structure of one of these decaheme cytochromes, MtrF, that allows the spatial organization of the 10 hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65-Å octaheme chain transects the length of the protein and is bisected by a planar 45-Å tetraheme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g., minerals), soluble substrates (e.g., flavins), and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.
Molecular Microbiology | 2012
David J. Richardson; Julea N. Butt; Jim K. Fredrickson; John M. Zachara; Liang Shi; Marcus J. Edwards; Gaye F. White; Nanakow Baiden; Andrew J. Gates; Sophie J. Marritt; Thomas A. Clarke
Many species of bacteria can couple anaerobic growth to the respiratory reduction of insoluble minerals containing Fe(III) or Mn(III/IV). It has been suggested that in Shewanella species electrons cross the outer membrane to extracellular substrates via ‘porin–cytochrome’ electron transport modules. The molecular structure of an outer‐membrane extracellular‐facing deca‐haem terminus for such a module has recently been resolved. It is debated how, once outside the cells, electrons are transferred from outer‐membrane cytochromes to insoluble electron sinks. This may occur directly or by assemblies of cytochromes, perhaps functioning as ‘nanowires’, or via electron shuttles. Here we review recent work in this field and explore whether it allows for unification of the electron transport mechanisms supporting extracellular mineral respiration in Shewanella that may extend into other genera of Gram‐negative bacteria.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Gaye F. White; Zhi Shi; Liang Shi; Zheming Wang; Alice Dohnalkova; Matthew J. Marshall; James K. Fredrickson; John M. Zachara; Julea N. Butt; David J. Richardson; Thomas A. Clarke
The mineral-respiring bacterium Shewanella oneidensis uses a protein complex, MtrCAB, composed of two decaheme cytochromes, MtrC and MtrA, brought together inside a transmembrane porin, MtrB, to transport electrons across the outer membrane to a variety of mineral-based electron acceptors. A proteoliposome system containing a pool of internalized electron carriers was used to investigate how the topology of the MtrCAB complex relates to its ability to transport electrons across a lipid bilayer to externally located Fe(III) oxides. With MtrA facing the interior and MtrC exposed on the outer surface of the phospholipid bilayer, the established in vivo orientation, electron transfer from the interior electron carrier pool through MtrCAB to solid-phase Fe(III) oxides was demonstrated. The rates were 103 times higher than those reported for reduction of goethite, hematite, and lepidocrocite by S. oneidensis, and the order of the reaction rates was consistent with those observed in S. oneidensis cultures. In contrast, established rates for single turnover reactions between purified MtrC and Fe(III) oxides were 103 times lower. By providing a continuous flow of electrons, the proteoliposome experiments demonstrate that conduction through MtrCAB directly to Fe(III) oxides is sufficient to support in vivo, anaerobic, solid-phase iron respiration.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Adrian J. Jervis; Jason C. Crack; Gaye F. White; Peter J. Artymiuk; Myles R. Cheesman; Andrew J. Thomson; Nick E. Le Brun; Jeffrey Green
Fumarate and nitrate reduction regulatory (FNR) proteins are bacterial transcription factors that coordinate the switch between aerobic and anaerobic metabolism. In the absence of O2, FNR binds a [4Fe-4S]2+ cluster (ligated by Cys-20, 23, 29, 122) promoting the formation of a transcriptionally active dimer. In the presence of O2, FNR is converted into a monomeric, non-DNA-binding form containing a [2Fe-2S]2+ cluster. The reaction of the [4Fe-4S]2+ cluster with O2 has been shown to proceed via a 2-step process, an O2-dependent 1-electron oxidation to yield a [3Fe-4S]+ intermediate with release of 1 Fe2+ ion, followed by spontaneous rearrangement to the [2Fe-2S]2+ form with release of 1 Fe3+ and 2 S2− ions. Here, we show that replacement of Ser-24 by Arg, His, Phe, Trp, or Tyr enhances aerobic activity of FNR in vivo. The FNR-S24F protein incorporates a [4Fe-4S]2+ cluster with spectroscopic properties similar to those of FNR. However, the substitution enhances the stability of the [4Fe-4S]2+ cluster in the presence of O2. Kinetic analysis shows that both steps 1 and 2 are slower for FNR-S24F than for FNR. A molecular model suggests that step 1 of the FNR-S24F iron–sulfur cluster reaction with O2 is inhibited by shielding of the iron ligand Cys-23, suggesting that Cys-23 or the cluster iron bound to it is a primary site of O2 interaction. These data lead to a simple model of the FNR switch with physiological implications for the ability of FNR proteins to operate over different ranges of in vivo O2 concentrations.
Scientific Reports | 2015
Marcus J. Edwards; Gaye F. White; Michael Norman; Alice Tome-Fernandez; Emma V. Ainsworth; Liang Shi; Jim K. Fredrickson; John M. Zachara; Julea N. Butt; David J. Richardson; Thomas A. Clarke
Extracellular microbe-mineral electron transfer is a major driving force for the oxidation of organic carbon in many subsurface environments. Extracellular multi-heme cytochromes of the Shewenella genus play a major role in this process but the mechanism of electron exchange at the interface between cytochrome and acceptor is widely debated. The 1.8 Å x-ray crystal structure of the decaheme MtrC revealed a highly conserved CX8C disulfide that, when substituted for AX8A, severely compromised the ability of S. oneidensis to grow under aerobic conditions. Reductive cleavage of the disulfide in the presence of flavin mononucleotide (FMN) resulted in the reversible formation of a stable flavocytochrome. Similar results were also observed with other decaheme cytochromes, OmcA, MtrF and UndA. The data suggest that these decaheme cytochromes can transition between highly reactive flavocytochromes or less reactive cytochromes, and that this transition is controlled by a redox active disulfide that responds to the presence of oxygen.
Journal of Biological Chemistry | 2010
Chloe Singleton; Gaye F. White; Jonathan D. Todd; Sophie J. Marritt; Myles R. Cheesman; Andrew W. B. Johnston; Nick E. Le Brun
Heme, a physiologically crucial form of iron, is a cofactor for a very wide range of proteins and enzymes. These include DNA regulatory proteins in which heme is a sensor to which an analyte molecule binds, effecting a change in the DNA binding affinity of the regulator. Given that heme, and more generally iron, must be carefully regulated, it is surprising that there are no examples yet in bacteria in which heme itself is sensed directly by a reversibly binding DNA regulatory protein. Here we show that the Rhizobium leguminosarum global iron regulatory protein Irr, which has many homologues within the α-proteobacteria and is a member of the Fur superfamily, binds heme, resulting in a dramatic decrease in affinity between the protein and its cognate, regulatory DNA operator sequence. Spectroscopic studies of wild-type and mutant Irr showed that the principal (but not only) heme-binding site is at a conserved HXH motif, whose substitution led to loss of DNA binding in vitro and of regulatory function in vivo. The R. leguminosarum Irr behaves very differently to the Irr of Bradyrhizobium japonicum, which is rapidly degraded in vivo by an unknown mechanism in conditions of elevated iron or heme, but whose DNA binding affinity in vitro does not respond to heme.
Photochemical and Photobiological Sciences | 2004
Gaye F. White; Konstantin L. Litvinenko; Stephen R. Meech; David L. Andrews; Andrew J. Thomson
The Tb(iii) complex of the iron-transport protein transferrin (Tb(2)-Tfr) exhibits strongly sensitised, sharp line luminescence from f-f states following multiphoton excitation via two tyrosinate residues directly co-ordinated to the lanthanide ion. Using an ultrafast Ti:sapphire laser system, a quadratic dependence of the Tb(iii) luminescence intensity was observed on excitation with photons at 503 and 566 nm, and a cubic dependence with photons at 800 nm. The two-photon cross-sections at 503 and 566 nm are 7.4 x 10(-50) and 0.37 x 10(-50) cm(4) s photon(-1) mol(-1), respectively, which compare favourably with values reported for the green fluorescent protein. Three-photon excitation at 800 nm gives rise to a Tb(iii) emission spectrum with excellent signal to noise ratios. These results lead to a proposal that if a Tb(iii)-protein complex with similar luminescent properties could be formed in vivo, an intra-cellular imaging system that uses multiphoton-excited, long-lived lanthanide ion luminescence could be developed. This offers the prospect of multiphoton imaging in tight focal planes using sharp line emission with long lifetimes for wavelength and time discrimination against background fluorescence.
Advances in Microbial Physiology | 2016
Gaye F. White; Marcus J. Edwards; Laura Gomez-Perez; David J. Richardson; Julea N. Butt; Thomas A. Clarke
The biochemical mechanisms by which microbes interact with extracellular soluble metal ions and insoluble redox-active minerals have been the focus of intense research over the last three decades. The process presents two challenges to the microorganism. Firstly, electrons have to be transported at the cell surface, which in Gram-negative bacteria presents an additional problem of electron transfer across the ~6nm of the outer membrane. Secondly, the electrons must be transferred to or from the terminal electron acceptors or donors. This review covers the known mechanisms that bacteria use to transport electrons across the cell envelope to external electron donors/acceptors. In Gram-negative bacteria, electron transfer across the outer membrane involves the use of an outer membrane β-barrel and cytochrome. These can be in the form of a porin-cytochrome protein, such as Cyc2 of Acidithiobacillus ferrooxidans, or a multiprotein porin-cytochrome complex like MtrCAB of Shewanella oneidensis MR-1. For mineral-respiring organisms, there is the additional challenge of transferring the electrons from the cell to mineral surface. For the strict anaerobe Geobacter sulfurreducens this requires electron transfer through conductive pili to associated cytochrome OmcS that directly reduces Fe(III)oxides, while the facultative anaerobe S. oneidensis MR-1 accomplishes mineral reduction through direct membrane contact, contact through filamentous extensions and soluble flavin shuttles, all of which require the outer membrane cytochromes MtrC and OmcA in addition to secreted flavin.
Journal of Biological Chemistry | 2010
Gaye F. White; Sonya M. Schermann; Justin M. Bradley; Andrew Roberts; Nicholas P. Greene; Ben C. Berks; Andrew J. Thomson
The Tat system is used to transport folded proteins across the cytoplasmic membrane in bacteria and archaea and across the thylakoid membrane of plant chloroplasts. Multimers of the integral membrane TatA protein are thought to form the protein-conducting element of the Tat pathway. Nitroxide radicals were introduced at selected positions within the transmembrane helix of Escherichia coli TatA and used to probe the structure of detergent-solubilized TatA complexes by EPR spectroscopy. A comparison of spin label mobilities allowed classification of individual residues as buried within the TatA complex or exposed at the surface and suggested that residues Ile12 and Val14 are involved in interactions between helices. Analysis of inter-spin distances suggested that the transmembrane helices of TatA subunits are arranged as a single-walled ring containing a contact interface between Ile12 on one subunit and Val14 on an adjacent subunit. Experiments in which labeled and unlabeled TatA samples were mixed demonstrate that TatA subunits are exchanged between TatA complexes. This observation is consistent with the TatA dynamic polymerization model for the mechanism of Tat transport.
Biochemical Society Transactions | 2008
Jason C. Crack; Adrian J. Jervis; Alisa A. Gaskell; Gaye F. White; Jeffrey Green; Andrew J. Thomson; Nick E. Le Brun
The metabolic flexibility of bacteria is key to their ability to survive and thrive in a wide range of environments. Optimal switching from one metabolic pathway to another is a key requirement for this flexibility. Respiration is a good example: many bacteria utilize O(2) as the terminal electron acceptor, but can switch to a range of other acceptors, such as nitrate, when O(2) becomes limiting. Sensing environmental levels of O(2) is the key step in switching from aerobic to anaerobic respiration. In Escherichia coli, the fumarate and nitrate reduction transcriptional regulator (FNR) controls this switch. Under O(2)-limiting conditions, FNR binds a [4Fe-4S](2+) cluster, generating a transcriptionally active dimeric form. Exposure to O(2) results in conversion of the cluster into a [2Fe-2S](2+) form, leading to dissociation of the protein into inactive monomers. The mechanism of cluster conversion, together with the nature of the reaction products, is of considerable current interest, and a near-complete description of the process has now emerged. The [4Fe-4S](2+) into [2Fe-2S](2+) cluster conversion proceeds via a two-step mechanism. In step 1, a one-electron oxidation of the cluster takes place, resulting in the release of a Fe(2+) ion, the formation of an intermediate [3Fe-4S](1+) cluster, together with the generation of a superoxide anion. In step 2, the intermediate [3Fe-4S](1+) cluster rearranges spontaneously to form the [2Fe-2S](2+) cluster, releasing two sulfide ions and an Fe(3+) ion in the process. The one-electron activation of the cluster, coupled to catalytic recycling of the superoxide anion back to oxygen via superoxide dismutase and catalase, provides a novel means of amplifying the sensitivity of [4Fe-4S](2+) FNR to its signal molecule.