Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gayle M. Davey is active.

Publication


Featured researches published by Gayle M. Davey.


Immunological Reviews | 2004

Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens

William R. Heath; Gabrielle T. Belz; Georg M. N. Behrens; Christopher M. Smith; Simon P. Forehan; Ian A. Parish; Gayle M. Davey; Nicholas S. Wilson; Francis R. Carbone; Jose A. Villadangos

Summary:  Cross‐presentation involves the uptake and processing of exogenous antigens within the major histocompatibility complex (MHC) class I pathway. This process is primarily performed by dendritic cells (DCs), which are not a single cell type but may be divided into several distinct subsets. Those expressing CD8α together with CD205, found primarily in the T‐cell areas of the spleen and lymph nodes, are the major subset responsible for cross‐presenting cellular antigens. This ability is likely to be important for the generation of cytotoxic T‐cell immunity to a variety of antigens, particularly those associated with viral infection, tumorigenesis, and DNA vaccination. At present, it is unclear whether the CD8α‐expressing DC subset captures antigen directly from target cells or obtains it indirectly from intermediary DCs that traffic from peripheral sites. In this review, we examine the molecular basis for cross‐presentation, discuss the role of DC subsets, and examine the contribution of this process to immunity, with some emphasis on DNA vaccination.


Blood | 2008

The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement.

Irina Caminschi; Anna I Proietto; Fatma Ahmet; Susie Kitsoulis; Joo Shin Teh; Jennifer Chi Yi Lo; Alexandra Rizzitelli; Li Wu; David Vremec; Serani Lh van Dommelen; Ian K. Campbell; Eugene Maraskovsky; Hal Braley; Gayle M. Davey; Patricia L. Mottram; Nicholas C. van de Velde; Kent Jensen; Andrew M. Lew; Mark D. Wright; William R. Heath; Ken Shortman; Mireille H. Lahoud

A novel dendritic cell (DC)-restricted molecule, Clec9A, was identified by gene expression profiling of mouse DC subtypes. Based on sequence similarity, a human ortholog was identified. Clec9A encodes a type II membrane protein with a single extracellular C-type lectin domain. Both the mouse Clec9A and human CLEC9A were cloned and expressed, and monoclonal antibodies (mAbs) against each were generated. Surface staining revealed that Clec9A was selective for mouse DCs and was restricted to the CD8(+) conventional DC and plasmacytoid DC subtypes. A subset of human blood DCs also expressed CLEC9A. A single injection of mice with a mAb against Clec9A, which targets antigens (Ags) to the DCs, produced a striking enhancement of antibody responses in the absence of added adjuvants or danger signals, even in mice lacking Toll-like receptor signaling pathways. Such targeting also enhanced CD4 and CD8 T-cell responses. Thus, Clec9A serves as a new marker to distinguish subtypes of both mouse and human DCs. Furthermore, targeting Ags to DCs with antibodies to Clec9A is a promising strategy to enhance the efficiency of vaccines, even in the absence of adjuvants.


Journal of Immunology | 2001

Cell-Associated Ovalbumin Is Cross-Presented Much More Efficiently than Soluble Ovalbumin In Vivo

Ming Li; Gayle M. Davey; Robyn M. Sutherland; Christian Kurts; Andrew M. Lew; Claire Hirst; Francis R. Carbone; William R. Heath

To better understand the antigenic requirements for cross-presentation, we compared the in vivo efficiency of presentation of cell-associated vs soluble OVA with the OT-I (CD8) and OT-II (CD4) TCR transgenic lines. Cross-presentation of cell-associated OVA was very efficient, requiring as little as 21 ng of OVA to activate OT-II cells and 100-fold less to activate OT-I cells. In contrast, soluble OVA was presented inefficiently, requiring at least 10,000 ng OVA for activation of either T cell subset. Thus, cell-associated OVA was presented 500-fold more efficiently than soluble OVA to CD4 T cells and 50,000-fold more efficiently to CD8 T cells. These data, which represent the first quantitative in vivo analysis of cross-presentation, show that cell-associated OVA is very efficiently presented via the class I pathway.


Journal of Experimental Medicine | 2010

Mouse CD8α+ DCs and human BDCA3+ DCs are major producers of IFN-λ in response to poly IC

Henning Lauterbach; Barbara Bathke; Stefanie Gilles; Claudia Traidl-Hoffmann; Christian A. Luber; György Fejer; Marina A. Freudenberg; Gayle M. Davey; David Vremec; Axel Kallies; Li Wu; Ken Shortman; Paul Chaplin; Mark Suter; Meredith O'Keeffe; Hubertus Hochrein

In humans and mice, CD8α+ conventional dendritic cells are the primary source of interferon-λ released in response to the adjuvant and Toll-like receptor 3 agonist poly IC.


Journal of Experimental Medicine | 2002

Peripheral Deletion of Autoreactive CD8 T Cells by Cross Presentation of Self-Antigen Occurs by a Bcl-2–inhibitable Pathway Mediated by Bim

Gayle M. Davey; Christian Kurts; Jacques F. A. P. Miller; Andreas Strasser; Andrew G. Brooks; Francis R. Carbone; William R. Heath

By transgenic expression of ovalbumin (OVA) as a model self antigen in the β cells of the pancreas, we have shown that self tolerance can be maintained by the cross-presentation of this antigen on dendritic cells in the draining lymph nodes. Such cross-presentation causes initial activation of OVA-specific CD8 T cells, which proliferate but are ultimately deleted; a process referred to as cross-tolerance. Here, we investigated the molecular basis of cross-tolerance. Deletion of CD8 T cells was prevented by overexpression of Bcl-2, indicating that cross-tolerance was mediated by a Bcl-2 inhibitable pathway. Recently, Bim, a pro-apoptotic Bcl-2 family member whose function can be inhibited by Bcl-2, was found to play a critical role in the deletion of autoreactive thymocytes, leading us to examine its role in cross-tolerance. Bim-deficient T cells were not deleted in response to cross-presented self-antigen, strongly implicating Bim as the pro-apoptotic mediator of cross-tolerance.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Blood-stage Plasmodium infection induces CD8+ T lymphocytes to parasite-expressed antigens, largely regulated by CD8α+ dendritic cells

Rachel J. Lundie; Tania F. de Koning-Ward; Gayle M. Davey; Catherine Q. Nie; Diana S. Hansen; Lei Shong Lau; Justine D. Mintern; Gabrielle T. Belz; Louis Schofield; Francis R. Carbone; Jose A. Villadangos; Brendan S. Crabb; William R. Heath

Although CD8+ T cells do not contribute to protection against the blood stage of Plasmodium infection, there is mounting evidence that they are principal mediators of murine experimental cerebral malaria (ECM). At present, there is no direct evidence that the CD8+ T cells mediating ECM are parasite-specific or, for that matter, whether parasite-specific CD8+ T cells are generated in response to blood-stage infection. To resolve this and to define the cellular requirements for such priming, we generated transgenic P. berghei parasites expressing model T cell epitopes. This approach was necessary as MHC class I-restricted antigens to blood-stage infection have not been defined. Here, we show that blood-stage infection leads to parasite-specific CD8+ and CD4+ T cell responses. Furthermore, we show that P. berghei-expressed antigens are cross-presented by the CD8α+ subset of dendritic cells (DC), and that this induces pathogen-specific cytotoxic T lymphocytes (CTL) capable of lysing cells presenting antigens expressed by blood-stage parasites. Finally, using three different experimental approaches, we provide evidence that CTL specific for parasite-expressed antigens contribute to ECM.


Blood | 2011

Aire regulates the transfer of antigen from mTECs to dendritic cells for induction of thymic tolerance

François-Xavier Hubert; Sarah Kinkel; Gayle M. Davey; Belinda Phipson; Scott N. Mueller; Adrian Liston; Anna I Proietto; Ping Cannon; Simon P. Forehan; Gordon K. Smyth; Li Wu; Christopher C. Goodnow; Francis R. Carbone; Hamish S. Scott; William R. Heath

To investigate the role of Aire in thymic selection, we examined the cellular requirements for generation of ovalbumin (OVA)-specific CD4 and CD8 T cells in mice expressing OVA under the control of the rat insulin promoter. Aire deficiency reduced the number of mature single-positive OVA-specific CD4(+) or CD8(+) T cells in the thymus, independent of OVA expression. Importantly, it also contributed in 2 ways to OVA-dependent negative selection depending on the T-cell type. Aire-dependent negative selection of OVA-specific CD8 T cells correlated with Aire-regulated expression of OVA. By contrast, for OVA-specific CD4 T cells, Aire affected tolerance induction by a mechanism that operated independent of the level of OVA expression, controlling access of antigen presenting cells to medullary thymic epithelial cell (mTEC)-expressed OVA. This study supports the view that one mechanism by which Aire controls thymic negative selection is by regulating the indirect presentation of mTEC-derived antigens by thymic dendritic cells. It also indicates that mTECs can mediate tolerance by direct presentation of Aire-regulated antigens to both CD4 and CD8 T cells.


Journal of Immunology | 2011

Targeting Antigen to Mouse Dendritic Cells via Clec9A Induces Potent CD4 T Cell Responses Biased toward a Follicular Helper Phenotype

Mireille H. Lahoud; Fatma Ahmet; Susie Kitsoulis; Soo San Wan; David Vremec; Chin-Nien Lee; Belinda Phipson; Wei Shi; Gordon K. Smyth; Andrew M. Lew; Yu Kato; Scott N. Mueller; Gayle M. Davey; William R. Heath; Ken Shortman; Irina Caminschi

Three surface molecules of mouse CD8+ dendritic cells (DCs), also found on the equivalent human DC subpopulation, were compared as targets for Ab-mediated delivery of Ags, a developing strategy for vaccination. For the production of cytotoxic T cells, DEC-205 and Clec9A, but not Clec12A, were effective targets, although only in the presence of adjuvants. For Ab production, however, Clec9A excelled as a target, even in the absence of adjuvant. Potent humoral immunity was a result of the highly specific expression of Clec9A on DCs, which allowed longer residence of targeting Abs in the bloodstream, prolonged DC Ag presentation, and extended CD4 T cell proliferation, all of which drove highly efficient development of follicular helper T cells. Because Clec9A shows a similar expression pattern on human DCs, it has particular promise as a target for vaccines of human application.


Journal of Experimental Medicine | 2004

Loss of Bim Increases T Cell Production and Function in Interleukin 7 Receptor–deficient Mice

Marc Pellegrini; Mikara Robati; Gabrielle T. Belz; Gayle M. Davey; Andreas Strasser

Interleukin (IL)-7 receptor (R) signaling is essential for T and B lymphopoiesis by promoting proliferation, differentiation, and survival of cells. Mice lacking either IL-7 or the IL-7Rα chain have abnormally low numbers of immature as well as mature T and B lymphocytes. Transgenic expression of the apoptosis inhibitor Bcl-2 rescues T cell development and function in IL-7Rα–deficient mice, indicating that activation of a proapoptotic Bcl-2 family member causes death of immature and mature T cells. BH3-only proteins such as Bim, which are distant proapoptotic members of the Bcl-2 family, are essential initiators of programmed cell death and stress-induced apoptosis. We generated Bim/IL-7Rα double deficient mice and found that loss of Bim significantly increased thymocyte numbers, restored near normal numbers of mature T cells in the blood and spleen, and enhanced cytotoxic T cell responses to virus infection in IL-7Rα−/− mice. These results indicate that Bim cooperates with other proapoptotic proteins in the death of IL-7–deprived T cell progenitors in vivo, but is the major inducer of this pathway to apoptosis in mature T cells. This indicates that pharmacological inhibition of Bim function might be useful for boosting immune responses in immunodeficient patients.


Journal of Experimental Medicine | 2007

Putative IKDCs are functionally and developmentally similar to natural killer cells, but not to dendritic cells.

Irina Caminschi; Fatma Ahmet; Klaus Heger; Jason Brady; Stephen L. Nutt; David Vremec; Suzanne Pietersz; Mireille H. Lahoud; Louis Schofield; Diana S. Hansen; Meredith O'Keeffe; Mark J. Smyth; Sammy Bedoui; Gayle M. Davey; Jose A. Villadangos; William R. Heath; Ken Shortman

Interferon-producing killer dendritic cells (IKDCs) have been described as possessing the lytic potential of NK cells and the antigen-presenting capacity of dendritic cells (DCs). In this study, we examine the lytic function and antigen-presenting capacity of mouse spleen IKDCs, including those found in DC preparations. IKDCs efficiently killed NK cell targets, without requiring additional activation stimuli. However, in our hands, when exposed to protein antigen or to MHC class II peptide, IKDCs induced little or no T cell proliferation relative to conventional DCs or plasmacytoid DCs, either before or after activation with CpG, or in several disease models. Certain developmental features indicated that IKDCs resembled NK cells more than DCs. IKDCs, like NK cells, did not express the transcription factor PU.1 and were absent from recombinase activating gene-2–null, common γ-chain–null (Rag2−/−Il2rg−/−) mice. When cultured with IL-15 and -18, IKDCs proliferated extensively, like NK cells. Under these conditions, a proportion of expanded IKDCs and NK cells expressed high levels of surface MHC class II. However, even such MHC class II+ IKDCs and NK cells induced poor T cell proliferative responses compared with DCs. Thus, IKDCs resemble NK cells functionally, and neither cell type could be induced to be effective antigen-presenting cells.

Collaboration


Dive into the Gayle M. Davey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ken Shortman

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Andrew M. Lew

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

David Vremec

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Gabrielle T. Belz

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Wu

Tsinghua University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge