Gayle M. Passmore
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gayle M. Passmore.
British Journal of Pharmacology | 2009
David A. Brown; Gayle M. Passmore
KCNQ genes encode five Kv7 K+ channel subunits (Kv7.1–Kv7.5). Four of these (Kv7.2–Kv7.5) are expressed in the nervous system. Kv7.2 and Kv7.3 are the principal molecular components of the slow voltage‐gated M‐channel, which widely regulates neuronal excitability, although other subunits may contribute to M‐like currents in some locations. M‐channels are closed by receptors coupled to Gq such as M1 and M3 muscarinic receptors; this increases neuronal excitability and underlies some forms of cholinergic excitation. Muscarinic closure results from activation of phospholipase C and consequent hydrolysis and depletion of membrane phosphatidylinositol‐4,5‐bisphosphate, which is required for channel opening. Some effects of M‐channel closure, determined from transmitter action, selective blocking drugs (linopirdine and XE991) and KCNQ2 gene disruption or manipulation, are as follows: (i) in sympathetic neurons: facilitation of repetitive discharges and conversion from phasic to tonic firing; (ii) in sensory nociceptive systems: facilitation of A‐delta peripheral sensory fibre responses to noxious heat; and (iii) in hippocampal pyramidal neurons: facilitation of repetitive discharges, enhanced after‐depolarization and burst‐firing, and induction of spontaneous firing through a reduction of action potential threshold at the axon initial segment. Several drugs including flupirtine and retigabine enhance neural Kv7/M‐channel activity, principally through a hyperpolarizing shift in their voltage gating. In consequence they reduce neural excitability and can inhibit nociceptive stimulation and transmission. Flupirtine is in use as a central analgesic; retigabine is under clinical trial as a broad‐spectrum anticonvulsant and is an effective analgesic in animal models of chronic inflammatory and neuropathic pain.
Nature Communications | 2012
Michael S. Minett; Mohammed A. Nassar; Anna K. Clark; Gayle M. Passmore; Anthony H. Dickenson; Fan Wang; Marzia Malcangio; John N. Wood
Human acute and inflammatory pain requires the expression of voltage-gated sodium channel Nav1.7 but its significance for neuropathic pain is unknown. Here we show that Nav1.7 expression in different sets of mouse sensory and sympathetic neurons underlies distinct types of pain sensation. Ablating Nav1.7 gene (SCN9A) expression in all sensory neurons using Advillin-Cre abolishes mechanical pain, inflammatory pain and reflex withdrawal responses to heat. In contrast, heat-evoked pain is retained when SCN9A is deleted only in Nav1.8-positive nociceptors. Surprisingly, responses to the hotplate test, as well as neuropathic pain, are unaffected when SCN9A is deleted in all sensory neurons. However, deleting SCN9A in both sensory and sympathetic neurons abolishes these pain sensations and recapitulates the pain-free phenotype seen in humans with SCN9A loss-of-function mutations. These observations demonstrate an important role for Nav1.7 in sympathetic neurons in neuropathic pain, and provide possible insights into the mechanisms that underlie gain-of-function Nav1.7-dependent pain conditions.
PLOS ONE | 2008
Lydia Jiménez-Díaz; Sandrine M. Géranton; Gayle M. Passmore; J. Lianne Leith; Amy S. Fisher; Laura Berliocchi; Anantha K. Sivasubramaniam; Anne Sheasby; Bridget M. Lumb; Stephen P. Hunt
Recent studies have demonstrated the importance of local protein synthesis for neuronal plasticity. In particular, local mRNA translation through the mammalian target of rapamycin (mTOR) has been shown to play a key role in regulating dendrite excitability and modulating long-term synaptic plasticity associated with learning and memory. There is also increased evidence to suggest that intact adult mammalian axons have a functional requirement for local protein synthesis in vivo. Here we show that the translational machinery is present in some myelinated sensory fibers and that active mTOR-dependent pathways participate in maintaining the sensitivity of a subpopulation of fast-conducting nociceptors in vivo. Phosphorylated mTOR together with other downstream components of the translational machinery were localized to a subset of myelinated sensory fibers in rat cutaneous tissue. We then showed with electromyographic studies that the mTOR inhibitor rapamycin reduced the sensitivity of a population of myelinated nociceptors known to be important for the increased mechanical sensitivity that follows injury. Behavioural studies confirmed that local treatment with rapamycin significantly attenuated persistent pain that follows tissue injury, but not acute pain. Specifically, we found that rapamycin blunted the heightened response to mechanical stimulation that develops around a site of injury and reduced the long-term mechanical hypersensitivity that follows partial peripheral nerve damage - a widely used model of chronic pain. Our results show that the sensitivity of a subset of sensory fibers is maintained by ongoing mTOR-mediated local protein synthesis and uncover a novel target for the control of long-term pain states.
Neuropharmacology | 2008
Philip M. Lang; Johannes Fleckenstein; Gayle M. Passmore; David A. Brown; Peter Grafe
Enhancement of membrane K(+) conductance may reduce the abnormal excitability of primary afferent nociceptive neurons in neuropathic pain. It has been shown that retigabine, a novel anticonvulsant, activates Kv7 (KCNQ/M) channels in the axonal/nodal membrane of peripheral myelinated axons. In this study, we have tested the effects of retigabine on excitability parameters of C-type nerve fibers in isolated fascicles of human sural nerve. Application of retigabine (3-10 microM) produced an increase in membrane threshold. This effect was pronounced in depolarized axons and small in hyperpolarized axons. This finding indicates that retigabine produces a membrane hyperpolarization which is limited by the K(+) equilibrium potential. The retigabine-induced reduction in excitability was accompanied by modifications of the post-spike recovery cycle. Most notable is the development of a late subexcitability at 250-400 ms following a short burst of action potentials. All effects of retigabine were blocked in the presence of XE991 (10 microM). The data show that Kv7 channels are present on axons of unmyelinated, including nociceptive, peripheral human nerve fibers. It is likely that activation of these channels by retigabine may reduce the ectopic generation of action potentials in neuropathic pain.
Frontiers in Molecular Neuroscience | 2012
Gayle M. Passmore; Joanne M. Reilly; Matthew Thakur; Vanessa N. Keasberry; Stephen J. Marsh; Anthony H. Dickenson; David A. Brown
M-channels carry slowly activating potassium currents that regulate excitability in a variety of central and peripheral neurons. Functional M-channels and their Kv7 channel correlates are expressed throughout the somatosensory nervous system where they may play an important role in controlling sensory nerve activity. Here we show that Kv7.2 immunoreactivity is expressed in the peripheral terminals of nociceptive primary afferents. Electrophysiological recordings from single afferents in vitro showed that block of M-channels by 3 μM XE991 sensitized Aδ- but not C-fibers to noxious heat stimulation and induced spontaneous, ongoing activity at 32°C in many Aδ-fibers. These observations were extended in vivo: intraplantar injection of XE991 selectively enhanced the response of deep dorsal horn (DH) neurons to peripheral mid-range mechanical and higher range thermal stimuli, consistent with a selective effect on Aδ-fiber peripheral terminals. These results demonstrate an important physiological role of M-channels in controlling nociceptive Aδ-fiber responses and provide a rationale for the nocifensive behaviors that arise following intraplantar injection of the M-channel blocker XE991.
Journal of Clinical Investigation | 2010
David A. Brown; Gayle M. Passmore
Bradykinin is the most potent endogenous inducer of acute pain. However, the way in which it excites nociceptive sensory nerve endings is still unclear. In an article recently published in the JCI, Liu et al. suggest a new mechanism via which bradykinin induces acute spontaneous pain. The authors report that the stimulation of B2 bradykinin receptors by bradykinin triggers the release of intracellular calcium ions from nociceptive sensory neurons of rat dorsal root ganglia. This depolarizes the sensory nerve endings by simultaneously closing M-type potassium channels and opening TMEM16A chloride channels, resulting in the production of nociceptive signals. Here, we discuss the relationship between this effect and a previously described mechanism for pain sensitization and evaluate its potential significance for therapeutic pain control. A separate study by Patwardhan et al. in this issue of the JCI identifies oxidized linoleic acid metabolites as novel mediators of thermally induced pain.
PLOS ONE | 2013
Jon Robbins; Gayle M. Passmore; Fe C. Abogadie; Joanne M. Reilly; David A. Brown
The KCNQ2 gene product, Kv7.2, is a subunit of the M-channel, a low-threshold voltage-gated K+ channel that regulates mammalian and human neuronal excitability. Spontaneous mutations one of the KCNQ2 genes cause disorders of neural excitability such as Benign Familial Neonatal Seizures. However there appear to be no reports in which both human KCNQ2 genes are mutated. We therefore asked what happens to M-channel function when both KCNQ2 genes are disrupted. We addressed this using sympathetic neurons isolated from mice in which the KCNQ2 gene was truncated at a position corresponding to the second transmembrane domain of the Kv7.2 protein. Since homozygote KCNQ2−/− mice die postnatally, experiments were largely restricted to neurons from late embryos. Quantitative PCR revealed an absence of KCNQ2 mRNA in ganglia from KCNQ2−/− embryos but 100–120% increase of KCNQ3 and KCNQ5 mRNAs; KCNQ2+/− ganglia showed ∼30% less KCNQ2 mRNA than wild-type (+/+) ganglia but 40–50% more KCNQ3 and KCNQ5 mRNA. Neurons from KCNQ2−/− embryos showed a complete absence of M-current, even after applying the Kv7 channel enhancer, retigabine. Neurons from heterozygote KCNQ2+/− embryos had ∼60% reduced M-current. In contrast, M-currents in neurons from adult KCNQ2+/− mice were no smaller than those in neurons from wild-type mice. Measurements of tetraethylammonium block did not indicate an increased expression of Kv7.5-containing subunits, implying a compensatory increase in Kv7.2 expression from the remaining KCNQ2 gene. We conclude that mouse embryonic M-channels have an absolute requirement for Kv7.2 subunits for functionality, that the reduced M-channel activity in heterozygote KCNQ2+/− mouse embryos results primarily from a gene-dosage effect, and that there is a compensatory increase in Kv7.2 expression in adult mice.
The Journal of Neuroscience | 2003
Gayle M. Passmore; A. A. Selyanko; Mohini Mistry; Mona AlQatari; Stephen J. Marsh; Elizabeth A. Matthews; Anthony H. Dickenson; Terry A. Brown; Stephen Anthony Burbidge; Martin J. Main; David A. Brown
The Journal of Neuroscience | 2003
J. K. Hadley; Gayle M. Passmore; L. Tatulian; Mona Al-Qatari; Fei Ye; Alan D. Wickenden; David A. Brown
Journal of Pharmacological and Toxicological Methods | 2005
Gayle M. Passmore