Gaynor E. Spencer
Brock University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gaynor E. Spencer.
The Journal of Neuroscience | 2006
Ronald E. van Kesteren; Christopher Carter; H.M.G. Dissel; Jan van Minnen; Yvonne Gouwenberg; Naweed I. Syed; Gaynor E. Spencer; August B. Smit
Local protein synthesis plays an essential role in the regulation of various aspects of axonal and dendritic function in adult neurons. At present, however, there is no direct evidence that local protein translation is functionally contributing to neuronal outgrowth. Here, we identified the mRNA encoding the actin-binding protein β-thymosin as one of the most abundant transcripts in neurites of outgrowing neurons in culture. β-Thymosin mRNA is not evenly distributed in neurites, but appears to accumulate at distinct sites such as turning points and growth cones. Using double-stranded RNA knockdown, we show that reducing β-thymosin mRNA levels results in a significant increase in neurite outgrowth, both in neurites of intact cells and in isolated neurites. Together, our data demonstrate that local synthesis of β-thymosin is functionally involved in regulating neuronal outgrowth.
The Journal of Neuroscience | 2008
Jennifer M. Dmetrichuk; Robert L. Carlone; Timothy R. B. Jones; Nicholas David Vesprini; Gaynor E. Spencer
Retinoic acid (RA) is an active metabolite of Vitamin A that plays an important role in the growth and differentiation of many cell types. All-trans RA (atRA) is the retinoic acid isomer that has been most widely studied in the nervous system, and can induce and direct neurite outgrowth from both vertebrate and invertebrate preparations. The presence and role of the 9-cis-RA isomer in the nervous system is far less well defined. Here, we used high-pressure liquid chromatography (HPLC) and mass spectrometry (MS) to show for the first time, the presence of both atRA and 9-cis-RA in the CNS of an invertebrate. We then demonstrated that 9-cis-RA was capable of exerting the same neurotrophic and chemotropic effects on cultured neurons as atRA. In this study, significantly more cells showed neurite outgrowth in 9-cis-RA versus the EtOH vehicle control, and 9-cis-RA significantly increased the number and length of neurites from identified neurons after 4 d in culture. 9-cis-RA also extended the duration of time that cells remained electrically excitable in culture. Furthermore, we showed for the first time in any species, that exogenous application of 9-cis-RA induced positive growth cone turning of cultured neurons. This study provides the first evidence for the presence of both atRA and 9-cis-RA in an invertebrate CNS and also provides the first direct evidence for a potential physiological role for 9-cis-RA in neuronal regeneration and axon pathfinding.
Developmental Biology | 2010
Christopher Carter; Nathan R. Farrar; Robert L. Carlone; Gaynor E. Spencer
It is well known that the vitamin A metabolite, retinoic acid, plays an important role in vertebrate development and regeneration. We have previously shown that the effects of RA in mediating neurite outgrowth, are conserved between vertebrates and invertebrates (Dmetrichuk et al., 2005, 2006) and that RA can induce growth cone turning in regenerating molluscan neurons (Farrar et al., 2009). In this study, we have cloned a retinoid receptor from the mollusc Lymnaea stagnalis (LymRXR) that shares about 80% amino acid identity with the vertebrate RXRalpha. We demonstrate using Western blot analysis that the LymRXR is present in the developing Lymnaea embryo and that treatment of embryos with the putative RXR ligand, 9-cis RA, or a RXR pan-agonist, PA024, significantly disrupts embryogenesis. We also demonstrate cytoplasmic localization of LymRXR in adult central neurons, with a strong localization in the neuritic (or axonal) domains. Using regenerating cultured motor neurons, we show that LymRXR is also present in the growth cones and that application of a RXR pan-agonist produces growth cone turning in isolated neurites (in the absence of the cell body and nucleus). These data support a role for RXR in growth cone guidance and are the first studies to suggest a nongenomic action for RXR in the nervous system.
BMC Genomics | 2009
Z.-P. Feng; Zhaolei Zhang; R. E. Van Kesteren; Volko A. Straub; P. van Nierop; Ke Jin; N. Nejatbakhsh; J.I. Goldberg; Gaynor E. Spencer; Yeoman; Willem C. Wildering; Jens R. Coorssen; R. P. Croll; L.T. Buck; Naweed I. Syed; A.B. Smit
BackgroundThe freshwater snail Lymnaea stagnalis (L. stagnalis) has served as a successful model for studies in the field of Neuroscience. However, a serious drawback in the molecular analysis of the nervous system of L. stagnalis has been the lack of large-scale genomic or neuronal transcriptome information, thereby limiting the use of this unique model.ResultsIn this study, we report 7,712 distinct EST sequences (median length: 847 nucleotides) of a normalized L. stagnalis central nervous system (CNS) cDNA library, resulting in the largest collection of L. stagnalis neuronal transcriptome data currently available. Approximately 42% of the cDNAs can be translated into more than 100 consecutive amino acids, indicating the high quality of the library. The annotated sequences contribute 12% of the predicted transcriptome size of 20,000. Surprisingly, approximately 37% of the L. stagnalis sequences only have a tBLASTx hit in the EST library of another snail species Aplysia californica (A. californica) even using a low stringency e-value cutoff at 0.01. Using the same cutoff, approximately 67% of the cDNAs have a BLAST hit in the NCBI non-redundant protein and nucleotide sequence databases (nr and nt), suggesting that one third of the sequences may be unique to L. stagnalis. Finally, using the same cutoff (0.01), more than half of the cDNA sequences (54%) do not have a hit in nematode, fruitfly or human genome data, suggesting that the L. stagnalis transcriptome is significantly different from these species as well. The cDNA sequences are enriched in the following gene ontology functional categories: protein binding, hydrolase, transferase, and catalytic enzymes.ConclusionThis study provides novel molecular insights into the transcriptome of an important molluscan model organism. Our findings will contribute to functional analyses in neurobiology, and comparative evolutionary biology. The L. stagnalis CNS EST database is available at http://www.Lymnaea.org/.
The Journal of Neuroscience | 2009
Nathan R. Farrar; Jennifer M. Dmetrichuk; Robert L. Carlone; Gaynor E. Spencer
The vitamin A metabolite, retinoic acid (RA), is well known for its roles in neural development and regeneration. We have previously shown that RA can induce positive growth cone turning in regenerating neurons in vitro. In this study, we address the subcellular mechanisms underlying this chemo-attractive response, using identified central neurons from the adult mollusc, Lymnaea stagnalis. We show that the RA-induced positive growth cone turning was maintained in the presence of the transcriptional inhibitor, actinomycin D. We also physically transected the neurites from the cell body and showed that isolated growth cones retain the capacity to turn toward a gradient of RA. Moreover, this attractive turning is dependent on de novo local protein synthesis and Ca2+ influx. Most of RAs actions during neurite outgrowth and regeneration require gene transcription, although these data show for the first time in any species, that the chemotropic action of RA in guiding neurite outgrowth, involves a novel, nongenomic mechanism.
Developmental Biology | 2008
Nathan R. Farrar; Gaynor E. Spencer
Growth cones are highly motile structures found at the leading edge of developing and regenerating nerve processes. Their role in axonal pathfinding has been well established and many guidance cues that influence growth cone behavior have now been identified. Many studies are now providing insights into the transduction and integration of signals in the growth cone, though a full understanding of growth cone behavior still eludes us. This review focuses on recent studies adding to the growing body of literature on growth cone behavior, focusing particularly on the level of autonomy the growth cone possesses and the role of local protein synthesis.
Molecular and Cellular Neuroscience | 2005
M. van Diepen; Gaynor E. Spencer; J. van Minnen; Y. Gouwenberg; J. Bouwman; A.B. Smit; R.E. van Kesteren
The tripartite motif proteins TRIM-2 and TRIM-3 have been put forward as putative organizers of neuronal outgrowth and structural plasticity. Here, we identified a molluscan orthologue of TRIM-2/3, named L-TRIM, which is up-regulated during in vitro neurite outgrowth of central neurons. In adult animals, L-Trim mRNA is ubiquitously expressed at low levels in the central nervous system and in peripheral tissues. Central nervous system expression of L-Trim mRNA is increased during postnatal brain development and during in vitro and in vivo neuronal regeneration. In vitro double-stranded RNA knock-down of L-Trim mRNA resulted in a >70% inhibition of neurite outgrowth. Together, our data establish a crucial role for L-TRIM in developmental neurite outgrowth and functional neuronal regeneration and indicate that TRIM-2/3 family members may have evolutionary conserved functions in neuronal differentiation.
Developmental Dynamics | 2011
Christopher Carter; Alysen Clark; Gaynor E. Spencer; Robert L. Carlone
Retinoic acid receptor beta 2 (RARβ2) has been proposed as an important receptor mediating retinoid‐induced axonal growth and regeneration in developing mammalian spinal cord and brain. In urodele amphibians, organisms capable of extensive central nervous system (CNS) regeneration as adults, this receptor had not been isolated, nor had its function been characterized. We have cloned a full‐length RARβ2 cDNA from adult newt CNS. This receptor, NvRARβ2, is expressed in various adult organs capable of regeneration, including the spinal cord. Interestingly, both the NvRARβ2 mRNA and protein are up‐regulated during the first 2 weeks after amputation of the tail, primarily in the ependymoglial and meningeal tissues near the rostral cut surface of the cord. Treatment with LE135, a RARβ‐selective antagonist, caused a significant inhibition of ependymal outgrowth and a decrease in tail regenerate length. These data support an early role for this receptor in caudal spinal cord and tail regeneration in this amphibian. Developmental Dynamics 240:2613–2625, 2011.
Journal of Experimental Zoology | 2015
Christopher Carter; Christopher Rand; Imtiaz Mohammad; Amanda Lepp; Nicholas David Vesprini; Olivia Wiebe; Robert L. Carlone; Gaynor E. Spencer
The vitamin A metabolite, retinoic acid, is an important molecule in nervous system development and regeneration in vertebrates. Retinoic acid signaling in vertebrates is mediated by two classes of nuclear receptors, the retinoid X receptors (RXRs) and the retinoic acid receptors (RARs). Recently, evidence has emerged to suggest that many effects of retinoic acid are conserved between vertebrate and invertebrate nervous systems, even though the RARs were previously thought to be a vertebrate innovation and to not exist in non-chordates. We have cloned a full-length putative RAR from the CNS of the mollusc Lymnaea stagnalis (LymRAR). Immunoreactivity for the RAR protein was found in axons of adult neurons in the central nervous system and in growth cones of regenerating neurons in vitro. A vertebrate RAR antagonist blocked growth cone turning induced by exogenous all-trans retinoic acid, possibly suggesting a role for this receptor in axon guidance. We also provide immunostaining evidence for the presence of RAR protein in the developing, embryonic CNS, where it is also found in axonal processes. Using qPCR, we determined that LymRAR mRNA is detectable in the early veliger stage embryo and that mRNA levels increase significantly during embryonic development. Putative disruption of retinoid signaling in Lymnaea embryos using vertebrate RAR antagonists resulted in abnormal eye and shell development and in some instances completely halted development, resembling the effects of all-trans retinoic acid. This study provides evidence for RAR functioning in a protostome species.
The Journal of Experimental Biology | 2009
Abdullah M. Khan; Gaynor E. Spencer
SUMMARY The aerial respiratory behaviour of the mollusc Lymnaea stagnalis is an important homeostatic behaviour that can be operantly conditioned. The central pattern generator underlying this behaviour, as well as motorneurons innervating the respiratory orifice, the pneumostome, have been identified and their activity can be monitored in the semi-intact preparation using electrophysiological recordings. In this study, we used both intact animals and semi-intact preparations to identify novel changes in the respiratory central pattern generator following operant conditioning. In addition, we reared animals in the absence of this respiratory behaviour throughout development, to investigate whether previous experience and activity-dependent plasticity during development are essential to allow neural plasticity in the adult. We found that animals raised normally (allowed to perform aerial respiratory behaviour) exhibited the expected reduction in aerial respiratory behaviour following operant conditioning. Then, using the semi-intact preparation, we identified novel neural changes within the network as a result of the conditioning. These included specific changes at the level of the central pattern generator interneurons, as well as the motor output. In the differentially reared intact animals, there was no behavioural reduction as a result of operant conditioning, although their baseline respiratory behaviour was already significantly reduced as a result of their differential rearing. There were, however, significant differences found in the network parameters in the semi-intact preparation, similar to those observed in normally reared animals. We thus provide evidence for neural plasticity within the network in the absence of significant behavioural changes in differentially reared animals, and show that plasticity was not dependent on previous activity of the network during development.