Geert-Jan Kroes
Leiden University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Geert-Jan Kroes.
Progress in Surface Science | 1999
Geert-Jan Kroes
The implementation and application of six-dimensional (6D) quantum dynamical methods to the dissociative chemisorption of H2 on metal surfaces is reviewed. The validity of the approximations that are made in deriving the 6D model is discussed. Descriptions are provided of the 6D methods that have been developed, such as the coupled channel and two time-dependent wave-packet implementations. All quantum dynamics calculations were based on potential energy surfaces taken from density functional theory, using the generalized gradient approximation and a slab representation of the metal surface. The calculations yield trends concerning the influence of incidence energy, molecular vibration, angular momentum, alignment, and incidence angle on reactivity. Issues on which theory and experiment differ are laid bare, in some cases leading to suggestions for new experiments or calculations. The validity of classical mechanics for treating the dynamics is discussed, and areas in which further theoretical progress is needed are identified.
Science | 2009
C. Díaz; E. Pijper; Roar A. Olsen; H. F. Busnengo; Daniel J. Auerbach; Geert-Jan Kroes
Simulating Surfaces Although modern computational chemistry can often match or even exceed experimental accuracy in modeling gas phase reactions, the surface-bound processes involved in most practical catalysis pose a substantially greater challenge to theory (see the Perspective by Hasselbrink). Díaz et al. (p. 832) show that a modification to standard density functional methods can predict reaction barrier heights to within 1 kilocalorie per mole for the widely studied dissociative adsorption of dihydrogen on copper. In a complementary study, Shenvi et al. (p. 829) apply an efficient algorithmic framework to model transitions among multiple electronic states at a metal surface and successfully account for the complex dependence of nitric oxide scattering on the small molecules vibrations and rotations. The use of a fitting parameter produces a much-improved potential energy surface for describing a surface reaction. Methods for accurately computing the interaction of molecules with metal surfaces are critical to understanding and thereby improving heterogeneous catalysis. We introduce an implementation of the specific reaction parameter (SRP) approach to density functional theory (DFT) that carries the method forward from a semiquantitative to a quantitative description of the molecule-surface interaction. Dynamics calculations on reactive scattering of hydrogen from the copper (111) surface using an SRP-DFT potential energy surface reproduce data on the dissociative adsorption probability as a function of incidence energy and reactant state and data on rotationally inelastic scattering with chemical accuracy (within ~4.2 kilojoules per mole).
Journal of Chemical Physics | 2002
Roar A. Olsen; H. F. Busnengo; A. Salin; Mark F. Somers; Geert-Jan Kroes; E. J. Baerends
By applying a corrugation-reducing procedure we have interpolated the six-dimensional (6D) potential energy surfaces for the H2/Pt(111) and H2/Cu(100) systems from data obtained by density functional theory (DFT) calculations. We have compared interpolated values with a large number of DFT results not used in the basis for the interpolation and we have obtained an average error below 20 meV and a maximum error of about 30 meV in the regions important for dissociative adsorption. Near the surface the corrugation-reducing procedure gives excellent results using only data from high-symmetry sites. However, we show that to reach the above mentioned accuracy level far from the surface, it is necessary to include information from at least one low-symmetry site. Care has been taken to demonstrate the quality of the interpolation along all degrees of freedom in different regions of the configuration space. The strengths of the method are shown together with the aspects requiring careful handling. A comparison wit...
Physical Chemistry Chemical Physics | 2012
Álvaro Valdés; Jérémie Brillet; Michael Grätzel; Hildur Gudmundsdóttir; Heine Anton Hansen; Hannes Jónsson; Peter Klüpfel; Geert-Jan Kroes; Florian Le Formal; Isabela C. Man; Rafael Da Silva Martins; Jens K. Nørskov; Jan Rossmeisl; Kevin Sivula; Aleksandra Vojvodic; Michael Zäch
An overview of a collaborative experimental and theoretical effort toward efficient hydrogen production via photoelectrochemical splitting of water into di-hydrogen and di-oxygen is presented here. We present state-of-the-art experimental studies using hematite and TiO(2) functionalized with gold nanoparticles as photoanode materials, and theoretical studies on electro and photo-catalysis of water on a range of metal oxide semiconductor materials, including recently developed implementation of self-interaction corrected energy functionals.
Journal of Physical Chemistry Letters | 2014
Francesco Nattino; Hirokazu Ueta; Helen Chadwick; Maarten E. van Reijzen; Rainer D. Beck; Bret Jackson; Marc C. van Hemert; Geert-Jan Kroes
The dissociative chemisorption of methane on metal surfaces is of fundamental and practical interest, being a rate-limiting step in the steam reforming process. The reaction is best modeled with quantum dynamics calculations, but these are currently not guaranteed to produce accurate results because they rely on potential energy surfaces based on untested density functionals and on untested dynamical approximations. To help overcome these limitations, here we present for the first time statistically accurate reaction probabilities obtained with ab initio molecular dynamics (AIMD) for a polyatomic gas-phase molecule reacting with a metal surface. Using a general purpose density functional, the AIMD reaction probabilities are in semiquantitative agreement with new quantum-state-resolved experiments on CHD3 + Pt(111). The comparison suggests the use of the sudden approximation for treating the rotations even though CHD3 has large rotational constants and yields an estimated reaction barrier of 0.9 eV for CH4 + Pt(111).
Science | 2008
Geert-Jan Kroes
Theorists have recently made substantial progress in simulating reactive molecule-metal surface scattering but still face major challenges. The grand challenge is to develop an approach that enables accurate predictive calculations of reactions involving electronically excited states with potential curve crossings. This challenge is all the more daunting because collisions involving molecules heavier than H2 may be accompanied by substantial energy exchange with the surface vibrations (phonons), and because an electronic structure approach that allows molecule-surface interaction energies to be computed with chemical accuracy (1 kilocalorie per mole) is not yet available even for the electronic ground state of molecule-metal surface systems.
Journal of Chemical Physics | 2014
Bret Jackson; Francesco Nattino; Geert-Jan Kroes
The dissociative chemisorption of methane on metal surfaces is of great practical and fundamental importance. Not only is it the rate-limiting step in the steam reforming of natural gas, the reaction exhibits interesting mode-selective behavior and a strong dependence on the temperature of the metal. We present a quantum model for this reaction on Ni(100) and Ni(111) surfaces based on the reaction path Hamiltonian. The dissociative sticking probabilities computed using this model agree well with available experimental data with regard to variation with incident energy, substrate temperature, and the vibrational state of the incident molecule. We significantly expand the vibrational basis set relative to earlier studies, which allows reaction probabilities to be calculated for doubly excited initial vibrational states, though it does not lead to appreciable changes in the reaction probabilities for singly excited initial states. Sudden models used to treat the center of mass motion parallel to the surface are compared with results from ab initio molecular dynamics and found to be reasonable. Similar comparisons for molecular rotation suggest that our rotationally adiabatic model is incorrect, and that sudden behavior is closer to reality. Such a model is proposed and tested. A model for predicting mode-selective behavior is tested, with mixed results, though we find it is consistent with experimental studies of normal vs. total (kinetic) energy scaling. Models for energy transfer into lattice vibrations are also examined.
Journal of Theoretical and Computational Chemistry | 2005
Geert-Jan Kroes; Mark F. Somers
The theory of time-dependent quantum dynamics of dissociative chemisorption of hydrogen on metal surfaces is reviewed, in the framework of electronically adiabatic scattering from static surfaces. Four implementations of the time-dependent wave packet (TDWP) method are discussed. In the direct product pseudo-spectral and the spherical harmonics pseudo-spectral methods, no use is made of the symmetry associated with the surface unit cell. This symmetry is exploited by the symmetry adapted wave packet and the symmetry adapted pseudo-spectral (SAPS) method, which are efficient for scattering at normal incidence. The SAPS method can be employed for potential energy surfaces of general form. Comparison to experiment shows that the TDWP method yields good, but not yet excellent, quantitative accuracy for dissociation of (ν = 0, j = 0)H2 if the calculations are based on accurately fitted density functional theory calculations that are performed using the generalized gradient approximation. The influence of the molecules vibration (rotation) is well (reasonably well) described. The theory does not yet yield quantitatively accurate results for rovibrationally inelastic scattering. The theory has helped with the interpretation of existing experimental results, for instance, by solving a parodox regarding the corrugation of Pt(111) as seen by reacting and scattering H2. The theory has also provided some exciting new predictions, for instance, concerning where on the surface of Cu(100)H2 reacts depending on its vibrational state. Future theoretical studies of H2 reacting on metal surfaces will likely be aimed at validating GGAs for molecule-surface interactions, and understanding trends in collisions of H2 with complex metal surfaces.
Physical Chemistry Chemical Physics | 2012
Geert-Jan Kroes
This perspective addresses four challenges facing theorists whose aim is to make quantitatively accurate predictions for reactions of molecules on metal surfaces, and suggests ways of meeting these challenges, focusing on dissociative chemisorption reactions of H(2), N(2), and CH(4). Addressing these challenges is ultimately of practical importance to a more accurate description of overall heterogeneously catalysed reactions, which play a role in the production of more than 90% of man-made chemicals. One challenge is to describe the interaction of a molecule with a metal surface with chemical accuracy, i.e., with errors in reaction barrier heights less than 1 kcal mol(-1). In this framework, the potential of a new implementation of specific reaction parameter density functional theory (SRP-DFT) will be discussed, with emphasis on applications to reaction of H(2) with metal surfaces. Two additional challenges are to come up with improved descriptions of the effects of phonons and electron-hole pairs on reaction of molecules like N(2) on metal surfaces. Phonons can be tackled using sudden approximations in quantum dynamics, and through Ab Initio Molecular Dynamics (AIMD) calculations using classical dynamics. To additionally achieve an accurate description of the effect of electron-hole pair excitation on dissociative chemisorption within a classical dynamics framework, it may be possible to combine AIMD with electronic friction. The fourth challenge we will consider is how to achieve an accurate quantum mechanical description of the dissociative chemisorption of a polyatomic molecule, like methane, on a metal surface. A method of potential interest is the Multi-Configuration Time-Dependent Hartree (MCTDH) method.
Physical Chemistry Chemical Physics | 2011
Andrew James Churchard; Ewa Banach; Andreas Borgschulte; Riccarda Caputo; Jian-Cheng Chen; David C. Clary; Karol J. Fijalkowski; Hans Geerlings; Radostina V. Genova; Wojciech Grochala; Tomasz Jaroń; Juan Carlos Juanes-Marcos; Bengt Kasemo; Geert-Jan Kroes; Ivan Ljubić; Nicola Naujoks; Jens K. Nørskov; Roar A. Olsen; Flavio Pendolino; Arndt Remhof; Loránd Románszki; Adem Tekin; Tejs Vegge; Michael Zäch; Andreas Züttel
The widespread adoption of hydrogen as an energy carrier could bring significant benefits, but only if a number of currently intractable problems can be overcome. Not the least of these is the problem of storage, particularly when aimed at use onboard light-vehicles. The aim of this overview is to look in depth at a number of areas linked by the recently concluded HYDROGEN research network, representing an intentionally multi-faceted selection with the goal of advancing the field on a number of fronts simultaneously. For the general reader we provide a concise outline of the main approaches to storing hydrogen before moving on to detailed reviews of recent research in the solid chemical storage of hydrogen, and so provide an entry point for the interested reader on these diverse topics. The subjects covered include: the mechanisms of Ti catalysis in alanates; the kinetics of the borohydrides and the resulting limitations; novel transition metal catalysts for use with complex hydrides; less common borohydrides; protic-hydridic stores; metal ammines and novel approaches to nano-confined metal hydrides.