Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geeth Manthilake is active.

Publication


Featured researches published by Geeth Manthilake.


Nature | 2008

Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite

Takashi Yoshino; Geeth Manthilake; Takuya Matsuzaki; Tomoo Katsura

The Earth’s mantle transition zone could potentially store a large amount of water, as the minerals wadsleyite and ringwoodite incorporate a significant amount of water in their crystal structure. The water content in the transition zone can be estimated from the electrical conductivities of hydrous wadsleyite and ringwoodite, although such estimates depend on accurate knowledge of the two conduction mechanisms in these minerals (small polaron and proton conductions), which early studies have failed to distinguish between. Here we report the electrical conductivity of these two minerals obtained by high-pressure multi-anvil experiments. We found that the small polaron conductions of these minerals are substantially lower than previously estimated. The contributions of proton conduction are small at temperatures corresponding to the mantle transition zone and the conductivity of wadsleyite is considerably lower than that of ringwoodite for both mechanisms. The dry model mantle shows considerable conductivity jumps associated with the olivine–wadsleyite, wadsleyite–ringwoodite and post-spinel transitions. Such a dry model explains well the currently available conductivity–depth profiles obtained from geoelectromagnetic studies. We therefore conclude that there is no need to introduce a significant amount of water in the mantle transition to satisfy electrical conductivity constraints.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Lattice thermal conductivity of lower mantle minerals and heat flux from Earth’s core

Geeth Manthilake; Nico de Koker; D. J. Frost; Catherine McCammon

The amount of heat flowing from Earth’s core critically determines the thermo-chemical evolution of both the core and the lower mantle. Consisting primarily of a polycrystalline aggregate of silicate perovskite and ferropericlase, the thermal boundary layer at the very base of Earth’s lower mantle regulates the heat flow from the core, so that the thermal conductivity (k) of these mineral phases controls the amount of heat entering the lowermost mantle. Here we report measurements of the lattice thermal conductivity of pure, Al-, and Fe-bearing MgSiO3 perovskite at 26 GPa up to 1,073 K, and of ferropericlase containing 0, 5, and 20% Fe, at 8 and 14 GPa up to 1,273 K. We find the incorporation of these elements in silicate perovskite and ferropericlase to result in a ∼50% decrease of lattice thermal conductivity relative to the end member compositions. A model of thermal conductivity constrained from our results indicates that a peridotitic mantle would have k = 9.1 ± 1.2 W/m K at the top of the thermal boundary layer and k = 8.4 ± 1.2 W/m K at its base. These values translate into a heat flux of 11.0 ± 1.4 terawatts (TW) from Earth’s core, a range of values consistent with a variety of geophysical estimates.


Science Advances | 2016

Experimental evidence supports mantle partial melting in the asthenosphere.

Julien Chantel; Geeth Manthilake; Denis Andrault; Davide Novella; Tony Yu; Yanbin Wang

Based on sound velocity measurements, upper mantle seismic anomalies could be explained by a melt fraction as low as 0.2%. The low-velocity zone (LVZ) is a persistent seismic feature in a broad range of geological contexts. It coincides in depth with the asthenosphere, a mantle region of lowered viscosity that may be essential to enabling plate motions. The LVZ has been proposed to originate from either partial melting or a change in the rheological properties of solid mantle minerals. The two scenarios imply drastically distinct physical and geochemical states, leading to fundamentally different conclusions on the dynamics of plate tectonics. We report in situ ultrasonic velocity measurements on a series of partially molten samples, composed of mixtures of olivine plus 0.1 to 4.0 volume % of basalt, under conditions relevant to the LVZ. Our measurements provide direct compressional (VP) and shear (VS) wave velocities and constrain attenuation as a function of melt fraction. Mantle partial melting appears to be a viable origin for the LVZ, for melt fractions as low as ~0.2%. In contrast, the presence of volatile elements appears necessary to explaining the extremely high VP/VS values observed in some local areas. The presence of melt in LVZ could play a major role in the dynamics of plate tectonics, favoring the decoupling of the plate relative to the asthenosphere.


Science Advances | 2016

Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges.

Geeth Manthilake; Nathalie Bolfan-Casanova; Davide Novella; Mainak Mookherjee; Denis Andrault

Development of interconnected magnetite during chlorite dehydration explains anomalous high conductivity at shallow mantle wedges. Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10−3 S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10−1 S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front.


Geophysical Research Letters | 2015

Electrical conductivity of lawsonite and dehydrating fluids at high pressures and temperatures

Geeth Manthilake; Mainak Mookherjee; Nathalie Bolfan-Casanova; Denis Andrault

Lawsonite is a calcium-aluminum bearing hydrous silicate mineral with CaAl2Si2O7(OH)2.H2O stoichiometry. It is thermodynamically stable in the hydrated oceanic crust. Low-velocity anomalies observed in the cold subducted slabs have been related to the unusual shear wave velocities of lawsonite eclogite. However, electrical conductivity of lawsonite at high pressure and temperature remains unknown. In this study, we measured the electrical conductivity of lawsonite at 7 GPa, and temperatures ranging from 298 K–1320 K. At 1173 K, the electrical conductivity of lawsonite is around 10−1 S/m. A sharp increase of electrical conductivity is observed at temperatures exceeding the dehydration ~1258 K. The high electrical conductivity up to 101 S/m observed in our experiments is due to the presence of highly conductive fluid and could explain the low resistivity observed at 150–250 km depths in subduction zone settings such as NE Japan, northern, and central Chile.


Geology | 2014

Hot mantle geotherms stabilize calcic carbonatite magmas up to the surface

Tahar Hammouda; Julien Chantel; Geeth Manthilake; Jérémy Guignard; Wilson A. Crichton

The eruption of calciocarbonatites at Earth’s surface is at odds with them being equilibrated with the mantle at depth because high-pressure experimental studies predict that significant magnesium contents should be expected. Here we report on new high-pressure experiments that demonstrate extreme calcium enrichment of carbonatites en route to the surface. We have monitored the decompression of partially molten carbonated peridotite using a multianvil apparatus coupled to synchrotron radiation. The experimental charge was molten at high pressure and high temperature, before being decompressed along a path that avoided the so-called “carbonate ledge” (a boundary that prevents carbonatitic melts from reaching the surface). Reaction with clinopyroxene yields calcium enrichment and magnesium depletion. The resulting Ca/(Ca + Mg) of the quenched melt reaches 0.95, which compares well with the composition of erupted calcic carbonatites [Ca/(Ca + Mg) ∼0.96–0.99] and of calcic melts trapped in mantle xenoliths from ocean islands [Ca/(Ca + Mg) ∼0.84–0.97]. Our results demonstrate that it is possible to bring carbonatites very close to the surface, without breakdown, and therefore without catastrophic CO2 release. Such occurrence appears to be favored by hot geotherms, meaning that higher temperatures tend to stabilize carbonatitic melts at shallow mantle pressure. Carbonatitic magmas are usually associated with low temperatures, because of the assumed low melting degree or low eruption temperature of the only active carbonatite volcano (i.e., Oldoinyo Lengai, Tanzania). Here we show that emplacement of carbonatites at or near the surface necessitates a hot environment.


Nature Communications | 2017

Experimental evidence supporting a global melt layer at the base of the Earth’s upper mantle

D. Freitas; Geeth Manthilake; Federica Schiavi; Julien Chantel; Nathalie Bolfan-Casanova; Mohamed Ali Bouhifd; Denis Andrault

The low-velocity layer (LVL) atop the 410-km discontinuity has been widely attributed to dehydration melting. In this study, we experimentally reproduced the wadsleyite-to-olivine phase transformation in the upwelling mantle across the 410-km discontinuity and investigated in situ the sound wave velocity during partial melting of hydrous peridotite. Our seismic velocity model indicates that the globally observed negative Vs anomaly (−4%) can be explained by a 0.7% melt fraction in peridotite at the base of the upper mantle. The produced melt is richer in FeO (~33 wt.%) and H2O (~16.5 wt.%) and its density is determined to be 3.56–3.74 g cm−3. The water content of this gravitationally stable melt in the LVL corresponds to a total water content in the mantle transition zone of 0.22 ± 0.02 wt.%. Such values agree with estimations based on magneto-telluric observations.A 56–60 km thick low velocity layer exists at the base of the Earth’s upper mantle. Here, the authors experimentally reproduced the wadsleyite-to-olivine transition in the upwelling mantle and show that the low velocity anomaly can be explained by melting of hydrous peridotite.


American Mineralogist | 2016

Elastic wave velocities in polycrystalline Mg3Al2Si3O12-pyrope garnet to 24 GPa and 1300 K

Julien Chantel; Geeth Manthilake; Daniel J. Frost; Christopher Beyer; Tiziana Boffa Ballaran; Zhicheng Jing; Yanbin Wang

Abstract The mantle transition zone, at depths between 410 to 660 km, is characterized by two prominent discontinuities in seismic-wave velocity in addition to a relatively steep velocity gradient. Throughout this region garnet will be an abundant mineral, the composition of which will change depending on both depth and lithology. It is important, therefore, to be able to characterize the effects of these changes on seismic velocities, which means that models must incorporate reliable elasticity data on the dominant mineral end-members that can be accurately employed at mantle conditions. In this study elastic wave velocities of synthetic polycrystalline pyrope garnet (Mg3Al2Si3O12) have been measured using ultrasonic interferometry combined with energy-dispersive synchrotron X-ray diffraction in a 1000-ton multi-anvil press. Measurements were performed at pressures up to 24 GPa, conditions compatible with the base of the transition zone, and at temperatures up to 1300 K. Least-squares refinement of the ambient-temperature data to a third-order finite strain equation yields values for the bulk and shear moduli and their pressure derivatives of KS0 = 172.0 ±1.6 GPa, G0 = 89.1 ±0.5 GPa, δKS/δP = 4.38 ±0.08, and δG/δP = 1.66 ±0.05. The determined temperature derivatives are δKS/δT = –17.8 ±2.0 MPa/K and δG/δT = –7.9 ±1.0 MPa/K. High-temperature data were fitted to extract parameters for a thermodynamic model. As several high-pressure and -temperature studies have been performed on pyrope, fitting all of the available data provides a more robust assessment of the accuracy of velocity measurements and allows the uncertainties that are inherent in the various methodologies to be realized. When this model is used to determine pyrope velocities at transition zone conditions the propagated uncertainties are approximately 1.5 and 2.5% for vp and vs, respectively. To reduce these uncertainties it is important not only to measure velocities as close as possible to mantle temperatures but also to understand what causes the difference in velocities between studies. Pyrope vP and vS at mantle transition zone conditions are found to be approximately 2.4 and 3.7%, respectively, larger than recent determinations of majoritic garnet at the same conditions, implying a significant variation with chemistry that is mainly realized at high temperatures.


Science Advances | 2018

Low hydrogen contents in the cores of terrestrial planets

Vincent Clesi; Mohamed Ali Bouhifd; Nathalie Bolfan-Casanova; Geeth Manthilake; Federica Schiavi; Caroline Raepsaet; H. Bureau; H. Khodja; Denis Andrault

During planetary accretion, hydrogen behaves as a lithophile element and is unlikely to be a major element in planetary cores. Hydrogen has been thought to be an important light element in Earth’s core due to possible siderophile behavior during core-mantle segregation. We reproduced planetary differentiation conditions using hydrogen contents of 450 to 1500 parts per million (ppm) in the silicate phase, pressures of 5 to 20 GPa, oxygen fugacity varying within IW-3.7 and IW-0.2 (0.2 to 3.7 log units lower than iron-wüstite buffer), and Fe alloys typical of planetary cores. We report hydrogen metal-silicate partition coefficients of ~2 × 10−1, up to two orders of magnitude lower than reported previously, and indicative of lithophile behavior. Our results imply H contents of ~60 ppm in the Earth and Martian cores. A simple water budget suggests that 90% of the water initially present in planetary building blocks was lost during planetary accretion. The retained water segregated preferentially into planetary mantles.


Nature Geoscience | 2018

Deep and persistent melt layer in the Archaean mantle

Denis Andrault; Giacomo Pesce; Geeth Manthilake; Julien Monteux; Nathalie Bolfan-Casanova; Julien Chantel; Davide Novella; Nicolas Guignot; Andrew King; J. P. Itié; Louis Hennet

The transition from the Archaean to the Proterozoic eon ended a period of great instability at the Earth’s surface. The origin of this transition could be a change in the dynamic regime of the Earth’s interior. Here we use laboratory experiments to investigate the solidus of samples representative of the Archaean upper mantle. Our two complementary in situ measurements of the melting curve reveal a solidus that is 200–250 K lower than previously reported at depths higher than about 100 km. Such a lower solidus temperature makes partial melting today easier than previously thought, particularly in the presence of volatiles (H2O and CO2). A lower solidus could also account for the early high production of melts such as komatiites. For an Archaean mantle that was 200–300 K hotter than today, significant melting is expected at depths from 100–150 km to more than 400 km. Thus, a persistent layer of melt may have existed in the Archaean upper mantle. This shell of molten material may have progressively disappeared because of secular cooling of the mantle. Crystallization would have increased the upper mantle viscosity and could have enhanced mechanical coupling between the lithosphere and the asthenosphere. Such a change might explain the transition from surface dynamics dominated by a stagnant lid on the early Earth to modern-like plate tectonics with deep slab subduction.A persistent melt layer may have existed in the Archaean upper mantle, according to experimental analyses. The melt layer could have decoupled the mantle from the overlying lithosphere, hindering plate tectonics.

Collaboration


Dive into the Geeth Manthilake's collaboration.

Top Co-Authors

Avatar

Denis Andrault

Blaise Pascal University

View shared research outputs
Top Co-Authors

Avatar

Nathalie Bolfan-Casanova

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Julien Chantel

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Davide Novella

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge