Geetha P. Bansal
Tulane University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Geetha P. Bansal.
Vaccine | 2015
Rajesh Kumar; Paresh Chandra Ray; Dibyadyuti Datta; Geetha P. Bansal; Evelina Angov; Nirbhay Kumar
Malaria transmission-blocking vaccines (TBV) targeting sexual stages of the parasite represent an ideal intervention to reduce the burden of the disease and eventual elimination at the population level in endemic regions. Immune responses against sexual stage antigens impair the development of parasite inside the mosquitoes. Target antigens identified in Plasmodium falciparum include surface proteins Pfs230 and Pfs48/45 in male and female gametocytes and Pfs25 expressed in zygotes and ookinetes. The latter has undergone extensive evaluation in pre-clinical and phase I clinical trials and remains one of the leading target antigens for the development of TBV. Pfs25 has a complex tertiary structure characterized by four EGF-like repeat motifs formed by 11 disulfide bonds, and it has been rather difficult to obtain Pfs25 as a homogenous product in native conformation in any heterologous expression system. Recently, we have reported expression of codon-harmonized recombinant Pfs25 in Escherichia coli (CHrPfs25) and which elicited highly potent malaria transmission-blocking antibodies in mice. In the current study, we investigated CHrPfs25 along with gold nanoparticles of different shapes, size and physicochemical properties as adjuvants for induction of transmission blocking immunity. The results revealed that CHrPfs25 delivered with various gold nanoparticles elicited strong transmission blocking antibodies and suggested that gold nanoparticles based formulations can be developed as nanovaccines to enhance the immunogenicity of vaccine antigens.
Clinical and Vaccine Immunology | 2015
Dibyadyuti Datta; Geetha P. Bansal; Rajesh Kumar; Barry Ellefsen; Drew Hannaman; Nirbhay Kumar
ABSTRACT Plasmodium falciparum sexual stage surface antigen Pfs25 is a well-established candidate for malaria transmission-blocking vaccine development. Immunization with DNA vaccines encoding Pfs25 has been shown to elicit potent antibody responses in mice and nonhuman primates. Studies aimed at further optimization have revealed improved immunogenicity through the application of in vivo electroporation and by using a heterologous prime-boost approach. The goal of the studies reported here was to systematically evaluate the impact of codon optimization, in vivo electroporation, and N-linked glycosylation on the immunogenicity of Pfs25 encoded by DNA vaccines. The results from this study demonstrate that while codon optimization and in vivo electroporation greatly improved functional immunogenicity of Pfs25 DNA vaccines, the presence or absence of N-linked glycosylation did not significantly impact vaccine efficacy. These findings suggest that N-glycosylation of Pfs25 encoded by DNA vaccines is not detrimental to overall transmission-blocking efficacy.
Vaccine | 2017
Dibyadyuti Datta; Geetha P. Bansal; Dietlind L. Gerloff; Barry Ellefsen; Drew Hannaman; Nirbhay Kumar
Pfs48/45 and Pfs25 are leading candidates for the development of Plasmodium falciparum transmission blocking vaccines (TBV). Expression of Pfs48/45 in the erythrocytic sexual stages and presentation to the immune system during infection in the human host also makes it ideal for natural boosting. However, it has been challenging to produce a fully folded, functionally active Pfs48/45, using various protein expression platforms. In this study, we demonstrate that full-length Pfs48/45 encoded by DNA plasmids is able to induce significant transmission reducing immune responses. DNA plasmids encoding Pfs48/45 based on native (WT), codon optimized (SYN), or codon optimized and mutated (MUT1 and MUT2), to prevent any asparagine (N)-linked glycosylation were compared with or without intramuscular electroporation (EP). EP significantly enhanced antibody titers and transmission blocking activity elicited by immunization with SYN Pfs48/45 DNA vaccine. Mosquito membrane feeding assays also revealed improved functional immunogenicity of SYN Pfs48/45 (N-glycosylation sites intact) as compared to MUT1 or MUT2 Pfs48/45 DNA plasmids (all N-glycosylation sites mutated). Boosting with recombinant Pfs48/45 protein after immunization with each of the different DNA vaccines resulted in significant boosting of antibody response and improved transmission reducing capabilities of all four DNA vaccines. Finally, immunization with a combination of DNA plasmids (SYN Pfs48/45 and SYN Pfs25) also provides support for the possibility of combining antigens targeting different life cycle stages in the parasite during transmission through mosquitoes.
ACS Applied Materials & Interfaces | 2017
Leila Pashazanusi; Baraka Lwoya; Shreyas Oak; Tushar Khosla; Julie N. L. Albert; Yu Tian; Geetha P. Bansal; Nirbhay Kumar; Noshir S. Pesika
Insects and small animals capable of adhering reversibly to a variety of surfaces employ the unique design of the distal part of their legs. In the case of mosquitoes, their feet are composed of thousands of micro- and nanoscale protruding structures, which impart superhydrophobic properties. Previous research has shown that the superhydrophobic nature of the feet allows mosquitoes to land on water, which is necessary for their reproduction cycle. Here, we show that van der Waals interactions are the main adhesion mechanism employed by mosquitoes to adhere to various surfaces. We further demonstrate that the judicious creation of surface roughness on an opposing surface can increase the adhesion strength because of the increased number of surface elements interacting with the setae through multiple contact points. Although van der Waals forces are shown to be the predominant mechanism by which mosquitoes adhere to surfaces, capillary forces can also contribute to the total adhesion force when the opposing surface is hydrophilic and under humid conditions. These fundamental properties can potentially be applied in the development of superior Long Lasting Insecticidal Nets (LLINs), which represent one of the most effective methods to mitigate mosquito-transmitted infectious diseases such as Malaria, Filaria, Zika, and Dengue.
PLOS ONE | 2016
Yi Cao; Geetha P. Bansal; Kristen M. Merino; Nirbhay Kumar
In general, malaria immunity has been suggested to be species specific with very little, if any, known cross-reactivity between Plasmodium vivax and P. falciparum, both of which are responsible for >90% of human malaria, and co-endemic in many countries. It is therefore believed that species-specific immunity may be needed to target different species of Plasmodium. Pfs48/45 and Pvs48/45 are well established targets in the sexual stages of the malaria parasites, and are being pursued for the development of transmission blocking vaccines. Comparison of their sequences reveals 61% and 55% identity at the DNA and protein level, respectively raising the possibility that these two target antigens might share cross-reacting epitopes. Having succeeded in expressing recombinant Pfs48/45 and Pvs48/45 proteins, we hypothesized that these proteins will not only exhibit immunological cross–reactivity but also cross-boost immune responses. Mice were immunized with purified recombinant proteins using CFA, Montanide ISA-51 and alum as adjuvants, and the sera were analyzed by ELISA, Western blotting and indirect fixed and live IFA to address the hypothesis. Our studies revealed that Pvs48/45-immune sera showed strong cross-reactivity to full length Pfs48/45 protein, and the majority of this cross reactivity was in the amino-terminal and carboxyl-terminal sub-fragments of Pfs48/45. In cross-boosting experiments Pfs48/45 and Pvs48/45 antigens were able to cross-boost each other in mouse immunization studies. Additionally we also noticed an effect of adjuvants in the overall magnitude of observed cross-reactivity. These studies may have significant implications for immunity targeting transmission of both the species of malaria parasites.
Immunology | 2016
Kristen M. Merino; Geetha P. Bansal; Nirbhay Kumar
Sexual stages of Plasmodium are critical for malaria transmission and stage‐specific antigens are important targets for development of malaria transmission‐blocking vaccines. Plasmodium falciparum gamete surface antigen (Pfs48/45) is important for male gamete fertility and is being pursued as a candidate vaccine antigen. Vaccine‐induced transmission‐blocking antibodies recognize reduction‐sensitive conformational epitopes in Pfs48/45. Processing and presentation of such disulphide‐bond‐constrained epitopes is critical for eliciting the desired immune responses. Mice lacking interferon‐γ‐inducible lysosomal thiol reductase (GILT), an enzyme that mediates reduction of S‐S bonds during antigen processing, were employed to investigate immunogenicity of Pfs48/45. It has been well established that the ability to reduce S‐S bonds in antigens guides effective T‐cell immune responses; however, involvement of GILT in the induction of subsequent B‐cell responses has not been explored. We hypothesized that the ability to reduce S‐S bonds in Pfs48/45 will impact the generation of T‐cell epitopes, and so influence helper T‐cell responses required for specific B‐cell responses. Non‐reduced and reduced and alkylated forms of Pfs48/45 were employed to evaluate immune responses in wild‐type and GILT knockout mice and studies revealed important differences in several immune response parameters, including differences in putative T‐cell epitope recognition, faster kinetics of waning of Pfs48/45‐specific IgG1 antibodies in knockout mice, differential patterns of interferon‐γ and interleukin‐4 secretions by splenocytes, and possible effects of GILT on induction of long‐lived plasma cells and memory B cells responsible for antigen‐recall responses. These studies emphasize the importance of antigen structural features that significantly influence the development of effective immune responses.
Acta Tropica | 2016
Noah H Paul; Arthur Vengesai; Takafira Mduluza; James Chipeta; Nicholas Midzi; Geetha P. Bansal; Nirbhay Kumar
Malaria continues to cause alarming morbidity and mortality in more than 100 countries worldwide. Antigens in the various life cycle stages of malaria parasites are presented to the immune system during natural infection and it is widely recognized that after repeated malaria exposure, adults develop partially protective immunity. Specific antigens of natural immunity represent among the most important targets for the development of malaria vaccines. Immunity against the transmission stages of the malaria parasite represents an important approach to reduce malaria transmission and is believed to become an important tool for gradual elimination of malaria. Development of immunity against Plasmodium falciparum sexual stages was evaluated in primary school children aged 6-16 years in Makoni district of Zimbabwe, an area of low to modest malaria transmission. Malaria infection was screened by microscopy, rapid diagnostic tests and finally using nested PCR. Plasma samples were tested for antibodies against recombinant Pfs48/45 and Pfs47 by ELISA. Corresponding serum samples were used to test for P. falciparum transmission reducing activity in Anopheles stephensi and An. gambiae mosquitoes using the membrane feeding assay. The prevalence of malaria diagnosed by rapid diagnostic test kit (Paracheck)™ was 1.7%. However, of the randomly tested blood samples, 66% were positive by nested PCR. ELISA revealed prevalence (64% positivity at 1:500 dilution, in randomly selected 66 plasma samples) of antibodies against recombinant Pfs48/45 (mean A 405nm=0.53, CI=0.46-0.60) and Pfs47 (mean A405nm=0.91, CI=0.80-1.02); antigens specific to the sexual stages. The mosquito membrane feeding assay demonstrated measurable transmission reducing ability of the samples that were positive for Pfs48/45 antibodies by ELISA. Interestingly, 3 plasma samples revealed enhancement of infectivity of P. falciparum in An. stephensi mosquitoes. These studies revealed the presence of antibodies with transmission reducing immunity in school age children from a moderate transmission area of malaria, and provide further support to exploit target antigens such as Pfs48/45 for further development of a malaria transmission blocking vaccine.
Acta Tropica | 2017
Geetha P. Bansal; Arthur Vengesai; Yi Cao; Takafira Mduluza; Nirbhay Kumar
Infections caused by Plasmodium falciparum and P. vivax account for more than 90% of global malaria burden. Exposure to malaria parasite elicits immune responses during natural infection and it is generally believed that the immunity is not only stage specific but also species specific. However, partial genomic similarity for various antigens in different Plasmodium spp. raises the possibility of immunological cross-reactivity at the level of specific antigens. Serum samples collected from children who were permanent residents of a P. falciparum transmission area in Zimbabwe were screened for antibody reactivity against Pfs48/45, a P. falciparum gametocyte antigen and Pvs48/45, a P. vivax homolog of Pfs48/45 using ELISA. Western blotting was used to further confirm identity of the specific antibody reactivity to the Pfs48/45 and Pvs48/45 proteins. Pan Plasmodium PCR and nested PCR were used to confirm infection with the Plasmodium species. Twenty-seven percent (49/181) of the participants were found to be sero-positive for Pfs48/45 and 73% (n=36) of these Pfs48/45 positive sera also showed reactivity with Pvs48/45. Immune cross-reactivity revealed by ELISA was also confirmed by Western blot analysis using a panel of randomly selected 23 Pfs48/45 and Pvs48/45 ELISA positive samples. Nested PCR analysis of 27 blood samples randomly selected from the 36 that showed positive ELISA reactivity to both Pfs48/45 and Pvs48/45 antigens confirmed infection with P. falciparum and generalized absence of P. vivax except for a single sample which revealed PCR positivity for both P. vivax and P. falciparum. Our studies with sera samples from a predominantly P. falciparum transmission area in Zimbabwe suggest immunological cross-reactivity with Pvs48/45, thus raising the possibility of partial species cross-reactive immunity and possible cross-boosting of immunity during co-infection with P. falciparum and P. vivax.
Pharmaceutical Research | 2017
Zahra Heidari; Jaspreet Arora; Dibyadyuti Datta; Vijay T. John; Nirbhay Kumar; Geetha P. Bansal
PurposeThe present study investigated the immunogenic potential of different cationic liposome formulations with a DNA plasmid encoding Pfs25, a malaria transmission-blocking vaccine candidate.MethodsPfs25 plasmid DNA was complexed with cationic liposomes to produce lipoplexes at different charge ratios of the cationic lipid head group to the nucleotide phosphate (N:P). The formation of lipoplexes was visualized by Cryogenic-TEM. Confocal microscopy of lipoplexes formed with GFP encoding plasmid DNA, and flow cytometry was used to determine their in vitro transfection capability. Two different lipoplex formulations using plasmid DNA encoding Pfs25 were evaluated for in vivo immunogenicity after intramuscular administration in Balb/c mice. Immune sera were analyzed by ELISA.ResultsThe results demonstrated that the cationic liposome-mediated DNA immunization with an N:P charge ratio of 1:3 (anionic lipoplexes) is more effective than the use of naked plasmid DNA alone. No antibody response was observed when lipoplexes with a higher N:P charge ratio of 10:3 (cationic lipoplexes) were used. Trehalose was added to some lipoplex formulations as a cryoprotectant and adjuvant, but it did not yield any further improvement of immunogenicity in vivo.ConclusionsThe results suggest that Pfs25 plasmid DNA delivered as lipoplexes at a charge ratio of 1:3 elicited strong immunogenicity in mice and may be improved further to match the immune responses of DNA vaccines administered by in vivo electroporation.
Acta Tropica | 2016
Geetha P. Bansal; Corey S. Weinstein; Nirbhay Kumar
During natural infection malaria parasites are injected into the bloodstream of a human host by the bite of an infected female Anopheles mosquito. Both asexual and mature sexual stages of Plasmodium circulate in the blood. Asexual forms are responsible for clinical malaria while sexual stages are responsible for continued transmission via the mosquitoes. Immune responses generated against various life cycle stages of the parasite have important roles in resistance to malaria and in reducing malaria transmission. Phagocytosis of free merozoites and erythrocytic asexual stages has been well studied, but very little is known about similar phagocytic clearance of mature sexual stages, which are critical for transmission. We evaluated phagocytic uptake of mature sexual (gametocyte) stage parasites by a human monocyte cell line in the absence of immune sera. We found that intact mature stages do not undergo phagocytosis, unless they are either killed or freed from erythrocytes. In view of this observation, we propose that the inability of mature gametocytes to be phagocytized may actually result in malaria transmission advantage. On the other hand, mature gametocytes that are not transmitted to mosquitoes during infection will eventually die and undergo phagocytosis, initiating immune responses that may have transmission blocking potential. A better understanding of early phagocytic clearance and immune responses to gametocytes may identify additional targets for transmission blocking strategies.