Gehad ElGhazali
University of Khartoum
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gehad ElGhazali.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Bart Ferwerda; Matthew McCall; Santos Alonso; Evangelos J. Giamarellos-Bourboulis; Maria Mouktaroudi; Neskuts Izagirre; Din Syafruddin; Gibson Kibiki; Tudor Cristea; Anneke Hijmans; Lutz Hamann; Shoshana Israel; Gehad ElGhazali; Marita Troye-Blomberg; Oliver Kumpf; Boubacar Maiga; Amagana Dolo; Ogobara K. Doumbo; Cornelus C. Hermsen; Anton F. H. Stalenhoef; Reinout van Crevel; Han G. Brunner; Djin-Ye Oh; Ralf R. Schumann; Concepción de la Rúa; Robert W. Sauerwein; Bart Jan Kullberg; Andre van der Ven; Jos W. M. van der Meer; Mihai G. Netea
Infectious diseases exert a constant evolutionary pressure on the genetic makeup of our innate immune system. Polymorphisms in Toll-like receptor 4 (TLR4) have been related to susceptibility to Gram-negative infections and septic shock. Here we show that two polymorphisms of TLR4, Asp299Gly and Thr399Ile, have unique distributions in populations from Africa, Asia, and Europe. Genetic and functional studies are compatible with a model in which the nonsynonymous polymorphism Asp299Gly has evolved as a protective allele against malaria, explaining its high prevalence in subSaharan Africa. However, the same allele could have been disadvantageous after migration of modern humans into Eurasia, putatively because of increased susceptibility to severe bacterial infections. In contrast, the Asp299Gly allele, when present in cosegregation with Thr399Ile to form the Asp299Gly/Thr399Ile haplotype, shows selective neutrality. Polymorphisms in TLR4 exemplify how the interaction between our innate immune system and the infectious pressures in particular environments may have shaped the genetic variations and function of our immune system during the out-of-Africa migration of modern humans.
Scandinavian Journal of Immunology | 2007
Amre Nasr; Nnaemeka C. Iriemenam; Marita Troye-Blomberg; Hayder A. Giha; Halima A. Balogun; O. F. Osman; Scott M. Montgomery; Gehad ElGhazali; Klavs Berzins
In a prospective clinical study in New Halfa Teaching Hospital, the possible association between FcγRIIa‐R/H131 polymorphism and anti‐malarial antibody responses with clinical outcome of Plasmodium falciparum malaria among Sudanese patients was investigated. A total of 256 individuals were consecutively enrolled, comprising 115 patients with severe malaria, 85 with mild malaria and 56 malaria‐free controls. Genotyping of FcγRIIa‐R/H131 dimorphism was performed using gene‐specific polymerase chain reaction (PCR) amplification with allele‐specific restriction enzyme digestion of the PCR product. The antibody responses to asexual blood‐stage antigens were assessed by an enzyme‐linked immunosorbent assay. The frequency of the FcγRIIa‐R/R131 genotype was significantly higher in those with severe malaria when compared with patients with mild malaria, while the FcγRIIa‐H/H131 genotype showed a significant association with mild malaria. A reduced risk of severe malaria with IgG3 antibodies in combination with the H/H131 genotype was observed. Furthermore, low levels of IgG2 antibodies reactive with the Pf332‐C231 antigen were also associated with lower risk of severe malaria in individuals carrying the H131 allele. The levels of IgG1 and IgG3 antibodies were statistically significantly higher in the mild malaria patients when compared with the severe malaria patients. Taken together, our study revealed that the FcγRIIa‐R/R131 genotype is associated with the development of severe malaria, while the H/H131 genotype is more likely to be associated with mild malaria. Our results also revealed that the natural acquisition of immunity against clinical malaria appeared to be more associated with IgG1 and IgG3 antibodies, signifying their roles in parasite‐neutralizing immune mechanisms.
Clinical and Experimental Immunology | 1997
Gehad ElGhazali; Hedvig Perlmann; A. S. M. Rutta; Peter Perlmann; Marita Troye-Blomberg
People living in Plasmodium falciparum‐endemic areas frequently have elevated levels of total as well as P. falciparum‐specific serum IgE. This study aimed at investigating whether the elevated serum IgE levels reflect a shift in the balance between CD4+ T helper 1 (Th1) and T helper 2 (Th2) cells in individuals naturally exposed to the P. falciparum parasite. To investigate the role of Th1 and Th2 cells in the human P. falciparum system we used the ELISPOT assay to determine the ratio of IFN‐γ‐ and IL‐4‐producing cells after specific antigen or mitogen activation in vitro. The donors were individuals who had acquired immunity through natural exposure to the parasite. In response to the specific malaria antigens, very few IL‐4‐producing cells were seen. However, in the response of individual donors to the polyclonal T cell activator, leucoagglutinin (La), the anti‐malarial IgE levels in plasma were correlated with an increased ratio of IL‐4/IFN‐γ producing cells. Thus, donors with ratios of IL‐4/IFN‐γ > 1 exhibited mean plasma anti‐malarial IgE levels significantly greater than those with ratios < 1. In individuals not living in P. falciparum‐endemic areas the ratio of IL‐4/IFN‐γ was always < 1. Taken together, our data suggest a shift in the balance between Th1 and Th2 cells in naturally P. falciparum‐primed individuals, associated with elevated anti‐P. falciparum plasma IgE levels. The role and biological significance of IgE (Th2‐type immune response) for protection against P. falciparum and/or pathogenesis of malaria require further study.
Vaccine | 2009
Nnaemeka C. Iriemenam; Atif H. Khirelsied; Amre Nasr; Gehad ElGhazali; Haider A. Giha; Thoraya M.E. A-Elgadir; Ahmed A. Agab-Aldour; Scott M. Montgomery; Robin F. Anders; Michael Theisen; Marita Troye-Blomberg; Mustafa I. Elbashir; Klavs Berzins
Despite many intervention programmes aimed at curtailing the scourge, malaria remains a formidable problem of human health. Immunity to asexual blood-stage of Plasmodium falciparum malaria is thought to be associated with protective antibodies of certain immunoglobulin classes and subclasses. We have analysed immunoglobulin G profiles to six leading blood-stage antigens in relation to clinical malaria outcome in a hospital-based study in Sudan. Our results revealed a linear association with anti-AMA-1-IgG1 antibodies in children <5 years and reduced risk of severe malaria, while the responses of the IgG3 antibodies against MSP-2, MSP-3, GLURP in individuals above 5 years were bi-modal. A dominance of IgG3 antibodies in >5 years was also observed. In the final combined model, the highest levels of IgG1 antibodies to AMA-1, GLURP-R0, and the highest levels of IgG3 antibodies to 3D7 MSP-2 were independently associated with protection from clinical malaria. The study provides further support for the potential importance of the studied merozoite vaccine candidate antigens as targets for parasite neutralizing antibody responses of the IgG1 and IgG3 subclasses.
Journal of Clinical Pharmacy and Therapeutics | 2007
I. I. Abdelrahim; Ishag Adam; Gehad ElGhazali; Lars L. Gustafsson; Mustafa I. Elbashir; R. A. Mirghani
Objectives: The study was conducted in New Halfa teaching hospital, eastern Sudan to investigate the pharmacokinetics of quinine in pregnant Sudanese women.
Malaria Journal | 2009
Amre Nasr; Nnaemeka C. Iriemenam; Hayder A. Giha; Halima A. Balogun; Robin F. Anders; Marita Troye-Blomberg; Gehad ElGhazali; Klavs Berzins
BackgroundA SNP at position 131, in the FcγRIIa gene, affects the binding of the different IgG subclasses and may influence the clinical variation seen in patients with falciparum malaria. This study confirms and extends previous findings, analysing the FcγRIIa (CD32) polymorphism in relation to the IgG subclass distribution seen among two sympatric tribes living in eastern Sudan, characterized by marked differences in susceptibility to Plasmodium falciparum malaria.MethodsTwo hundred and fifty Fulani subjects living in an area of meso-endemic P. falciparum malaria infection were genotyped for the FcγRIIa-131 polymorphism. For comparison, 101 non-Fulani donors – (Masaleit, Hausa and Four) – living in the same study area, were genotyped. The levels of plasma antibodies (IgG and subclasses) to four malaria antigens (AMA-1, MSP 2 – 3D7 & FC27, Pf332-C231) were measured using indirect enzyme-linked immunosorbent assays.ResultsThe FcγRIIa-H/H131 genotype was found to be significantly more prevalent in the Fulani as compared to the non-Fulani ethnic groups (36.0% for Fulani versus 17.8% for non-Fulani, adjusted OR 3.10, 95% CI 1.61–5.97, P value < 0.001). The Fulani showed lower anti-malarial IgG1 and IgG3 antibody levels as compared to the non-Fulani and higher levels of IgG2 antibodies.ConclusionThe FcγRIIa-H/H131 genotype and H131 allele is at higher frequency in the Fulani ethnic group. The H/H131 genotype was consistently associated with higher levels of anti-malarial IgG2 and IgG3 antibodies, while the R/R131 genotype was associated with higher levels of IgG1 antibodies.
Malaria Journal | 2009
Elisabeth Israelsson; Mattias Ekström; Amre Nasr; Amagana Dolo; Susannah Kearsley; Gishanthi Arambepola; Manijeh Vafa Homann; Bakary Maiga; Ogobara K. Doumbo; Gehad ElGhazali; Hayder A. Giha; Marita Troye-Blomberg; Klavs Berzins; Per Tornvall
BackgroundC-reactive protein (CRP) is an acute phase protein that can activate various immune cells and bind to certain Fcγ receptors. The latter may compete with the binding of IgG antibodies to these receptors and could thereby interfere with the antigen-specific immune response. Polymorphisms in the promoter region of the CRP gene have been strongly associated with the plasma concentration of CRP. The known lower susceptibility to malaria in the Fulani ethnic group, as compared to their sympatric neighbours in Africa, has been linked to different genetic backgrounds. The present study was performed to investigate if polymorphisms in the CRP gene could contribute to the lower susceptibility to malaria seen in the Fulani ethnic group.MethodsThe CRP -717 T>C, -286 C>T>A, and +1444 C>T polymorphisms were analysed in asymptomatic Fulani and non-Fulani individuals from Mali and Sudan using Pyrosequencing T and TaqMan r MGB probes.ResultsThe rare -286 A allele, previously shown to be associated with increased CRP expression and plasma levels, was shown to be more frequent in the non-Fulani ethnic groups as compared to the sympatric Fulani ethnic group both in Mali and Sudan. The common -717 T allele was more prevalent in the non-Fulani ethnic group compared to the sympatric Fulani ethnic group, but only in Mali. The parasite prevalence was increased for the -286 A allele, but not for the -717 T allele. No differences regarding genotype frequency or parasite prevalence were seen for +1444 C>T.ConclusionThis study indicate that CRP may play an important role in the immune responses to malaria, and that the -286 C/T/A CRP polymorphism may be a contributing factor to the lower susceptibility to malaria seen in the Fulani.
Journal of Immunology | 2007
Amir I. Elshafie; Erik Åhlin; Linda Mathsson; Gehad ElGhazali; Johan Rönnelid
Infection with Leishmania donovani is associated with IL-10 as well as with GM-CSF. Immune complexes (IC) exert important functions by stimulation of monocytes/macrophage-mediated production of pro- and anti-inflammatory cytokines in rheumatic diseases. In this investigation, we have explored IC-induced cytokine production during Leishmania infection. Sera from 43 patients with visceral leishmaniasis (VL), 17 patients with post-kala-azar dermal leishmaniasis, and 20 healthy Sudanese controls were precipitated with polyethylene glycol (PEG). The PEG precipitates were added to serum-free PBMC for 20 h,whereupon supernatant levels of IL-1β, IL-6, IL-10, IL-1 receptor antagonist protein, TNF-α, TNF receptor p75, and GM-CSF were investigated using ELISA. Circulating levels of C1q-binding IC were also measured in the serum samples. PEG precipitates from Leishmania-infected patients induced significantly higher levels of GM-CSF (p = 0.0037) and IL-10 (p < 0.0001), as well as of IL-6 (p < 0.0001) and IL-1 receptor antagonist (p = 0.0238) as compared with PEG precipitates from controls. Patients with acute VL as well as VL patients receiving sodium stibogluconate treatment displayed significantly increased levels of PEG precipitate-induced GM-CSF. The induction of GM-CSF by circulating IC was especially prominent in acute VL patients receiving sodium stibogluconate treatment; ANOVA revealed significant interaction between disease activity and treatment for PEG precipitate-induced levels of GM-CSF (disease activity, p = 0.0006; treatment, p = 0.0005; interaction, p = 0.0046). Parallel associations were determined for C1q-binding immune complexes, but not for any cytokine other than GM-CSF. The importance of IC-induced GM-CSF in leishmaniasis warrants further study.
Parasitology Research | 2007
Ishraga E. A-Elbasit; Gehad ElGhazali; Thoraya M.E. A-Elgadir; Amel A. Hamad; Hamza A. Babiker; Mustafa I. Elbashir; Hayder A. Giha
The severe malaria (SM) and uncomplicated malaria (UM) infections are expected to have different genetic makeup. In this study, blood samples were obtained from 325 donors with SM and UM and malaria-free donors (including asymptomatic submicroscopic malaria—ASUM), from Eastern Sudan. The SM group included patients with cerebral malaria (CM), severe malarial anemia (SMA), and other complications. The MSP2 locus was exploited for parasite genotyping. We found that the genetic diversity of the parasite population was marked (51 genotypes). The overall multiplicity of infection (MOI) was 1.5, and it was comparable between SM and UM. However, the MOI in ASUM (1.0) and fatal CM (1.14) was comparable and significantly lower than in UM (1.53), SMA (1.52), and nonfatal CM (1.7). The ratio of the IC1 to FC27 allele families was comparable between SM and UM, and the distribution of the allele sizes was correlated (correlation coefficient = 0.59 and 0.718; P < 0.001). It is interesting to note that the FC27 genotype was overrepresented in ASUM (68.2%) and was not recognized in fatal CM, while in mixed-clone infections, the clearance of IC1 after quinine treatment was faster than FC27 clearance. Finally, the composition of the multiclone infections (IC1 and FC27) was suggesting a stronger cross-immunity within rather than between MSP2 gene families.
Vaccine | 2010
Hayder A. Giha; Amre Nasr; Nnaemeka C. Iriemenam; Halima A. Balogun; David Arnot; Thor G. Theander; Marita Troye-Blomberg; Klavs Berzins; Gehad ElGhazali
The certainty of the protective role of acquired immunity in malaria is the major drive for malaria vaccine development. In this study, we measured the levels of total IgG and IgG subclasses to four candidate malaria vaccine antigens; MSP2-3D7, MSP2-FC27, AMA-1 and Pf332-C231, in plasma obtained from a cohort of 136 donors from Daraweesh in Sudan. The cohort was followed for malaria infection for 9 years. After an initial analysis, the immune response to Pf332-C231 antigen was the only one found associated with protection, thus taken for further analysis. The number of previous clinical malaria episodes experienced by the donors was used as an index for relative protection. The number of these episodes was found to be negatively correlated with the levels of pre-existing total IgG, IgG2 and IgG3 to Pf332-C231 (correlation coefficient, CC - 0.215, p=0.012; CC - 0.195, p=0.023 and CC - 0.211, p=0.014, respectively), and also with age (CC - 0.311, p<0.001). Unexpectedly, equal levels of Pf332-C231 antibodies were induced by both patent and sub-patent infections regardless of the number of previous malaria episodes (1-7). Combining the correlation analysis with a multi-linear regression, three variable markers for protection were emerged, two age-dependent, the antibody response to Pf332-C231 and an unidentified marker (likely immune response to other antigens), and the third was an age-independent unidentified marker (possibly gene polymorphisms). In conclusion, this report suggests a protective effect for IgG subclasses to Pf332-C231 antigen against malaria.