Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gemma Coxon is active.

Publication


Featured researches published by Gemma Coxon.


Water Resources Research | 2015

A novel framework for discharge uncertainty quantification applied to 500 UK gauging stations

Gemma Coxon; Jim E Freer; Ida Westerberg; Thorsten Wagener; Ross Woods; Paul Smith

Abstract Benchmarking the quality of river discharge data and understanding its information content for hydrological analyses is an important task for hydrologic science. There is a wide variety of techniques to assess discharge uncertainty. However, few studies have developed generalized approaches to quantify discharge uncertainty. This study presents a generalized framework for estimating discharge uncertainty at many gauging stations with different errors in the stage‐discharge relationship. The methodology utilizes a nonparametric LOWESS regression within a novel framework that accounts for uncertainty in the stage‐discharge measurements, scatter in the stage‐discharge data and multisection rating curves. The framework was applied to 500 gauging stations in England and Wales and we evaluated the magnitude of discharge uncertainty at low, mean and high flow points on the rating curve. The framework was shown to be robust, versatile and able to capture place‐specific uncertainties for a number of different examples. Our study revealed a wide range of discharge uncertainties (10–397% discharge uncertainty interval widths), but the majority of the gauging stations (over 80%) had mean and high flow uncertainty intervals of less than 40%. We identified some regional differences in the stage‐discharge relationships, however the results show that local conditions dominated in determining the magnitude of discharge uncertainty at a gauging station. This highlights the importance of estimating discharge uncertainty for each gauging station prior to using those data in hydrological analyses.


Hydrological Processes | 2016

Discharge and nutrient uncertainty: implications for nutrient flux estimation in small streams

Charlotte E M Lloyd; Jim E Freer; Penny J Johnes; Gemma Coxon; A.L. Collins

The measurement of discharge is fundamental in nutrient load estimation. Because of our ability to monitor discharge routinely, it is generally assumed that the associated uncertainty is low. This paper challenges this preconception, arguing that discharge uncertainty should be explicitly taken into account to produce robust statistical analyses. In many studies, paired discharge and chemical datasets are used to calculate ‘true’ loads and used as the benchmark to compare with other load estimates. This paper uses two years of high frequency (daily and sub-hourly) discharge and nutrient concentration data (nitrate-N and total phosphorus (TP)) collected at four field sites as part of the Hampshire Avon Demonstration Test Catchment (DTC) programme. A framework for estimating observational nutrient load uncertainty was used which combined a flexible non-parametric approach to characterising discharge uncertainty, with error modelling that allowed the incorporation of errors which were heteroscedastic and temporally correlated. The results showed that the stage–discharge relationships were non-stationary, and observational uncertainties from ±2 to 25% were recorded when the velocity–area method was used. The variability in nutrient load estimates ranged from 1.1 to 9.9% for nitrate-N and from 3.3 to 10% for TP when daily laboratory data were used, rising to a maximum of 9% for nitrate-N and 83% for TP when the sensor data were used. However, the sensor data provided a better representation of the ‘true’ load as storm events are better represented temporally, posing the question: is it more beneficial to have high frequency, lower precision data or lower frequency but higher precision data streams to estimate nutrient flux responses in headwater catchments?


Water Resources Research | 2016

Uncertainty in hydrological signatures for gauged and ungauged catchments

Ida Westerberg; Thorsten Wagener; Gemma Coxon; Hilary McMillan; Attilio Castellarin; Alberto Montanari; Jim E Freer

Reliable information about hydrological behavior is needed for water-resource management and scientific investigations. Hydrological signatures quantify catchment behavior as index values, and can be predicted for ungauged catchments using a regionalization procedure. The prediction reliability is affected by data uncertainties for the gauged catchments used in prediction and by uncertainties in the regionalization procedure. We quantified signature uncertainty stemming from discharge data uncertainty for 43 UK catchments and propagated these uncertainties in signature regionalization, while accounting for regionalization uncertainty with a weighted-pooling-group approach. Discharge uncertainty was estimated using Monte Carlo sampling of multiple feasible rating curves. For each sampled rating curve, a discharge time series was calculated and used in deriving the gauged signature uncertainty distribution. We found that the gauged uncertainty varied with signature type, local measurement conditions and catchment behavior, with the highest uncertainties (median relative uncertainty ±30–40% across all catchments) for signatures measuring high- and low-flow magnitude and dynamics. Our regionalization method allowed assessing the role and relative magnitudes of the gauged and regionalized uncertainty sources in shaping the signature uncertainty distributions predicted for catchments treated as ungauged. We found that 1) if the gauged uncertainties were neglected there was a clear risk of over-conditioning the regionalization inference, e.g. by attributing catchment differences resulting from gauged uncertainty to differences in catchment behavior, and 2) uncertainty in the regionalization results was lower for signatures measuring flow distribution (e.g. mean flow) than flow dynamics (e.g. autocorrelation), and for average flows (and then high flows) compared to low flows. This article is protected by copyright. All rights reserved.


Hydrological Processes | 2015

Discharge and nutrient uncertainty

Charlotte E M Lloyd; Jim E Freer; Penny J Johnes; Gemma Coxon; A.L. Collins

The measurement of discharge is fundamental in nutrient load estimation. Because of our ability to monitor discharge routinely, it is generally assumed that the associated uncertainty is low. This paper challenges this preconception, arguing that discharge uncertainty should be explicitly taken into account to produce robust statistical analyses. In many studies, paired discharge and chemical datasets are used to calculate ‘true’ loads and used as the benchmark to compare with other load estimates. This paper uses two years of high frequency (daily and sub-hourly) discharge and nutrient concentration data (nitrate-N and total phosphorus (TP)) collected at four field sites as part of the Hampshire Avon Demonstration Test Catchment (DTC) programme. A framework for estimating observational nutrient load uncertainty was used which combined a flexible non-parametric approach to characterising discharge uncertainty, with error modelling that allowed the incorporation of errors which were heteroscedastic and temporally correlated. The results showed that the stage–discharge relationships were non-stationary, and observational uncertainties from ±2 to 25% were recorded when the velocity–area method was used. The variability in nutrient load estimates ranged from 1.1 to 9.9% for nitrate-N and from 3.3 to 10% for TP when daily laboratory data were used, rising to a maximum of 9% for nitrate-N and 83% for TP when the sensor data were used. However, the sensor data provided a better representation of the ‘true’ load as storm events are better represented temporally, posing the question: is it more beneficial to have high frequency, lower precision data or lower frequency but higher precision data streams to estimate nutrient flux responses in headwater catchments?


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2017

Perceptual models of uncertainty for socio-hydrological systems: a flood risk change example

Ida Westerberg; Giuliano Di Baldassarre; Keith Beven; Gemma Coxon; Tobias Krueger

ABSTRACT Characterizing, understanding and better estimating uncertainties are key concerns for drawing robust conclusions when analyzing changing socio-hydrological systems. Here we suggest developing a perceptual model of uncertainty that is complementary to the perceptual model of the socio-hydrological system and we provide an example application to flood risk change analysis. Such a perceptual model aims to make all relevant uncertainty sources – and different perceptions thereof – explicit in a structured way. It is a first step to assessing uncertainty in system outcomes that can help to prioritize research efforts and to structure dialogue and communication about uncertainty in interdisciplinary work.


Water Resources Research | 2018

A Comparison of Methods for Streamflow Uncertainty Estimation

Julie E. Kiang; Chris Gazoorian; Hilary McMillan; Gemma Coxon; Jérôme Le Coz; Ida Westerberg; Arnaud Belleville; Damien Sevrez; Anna E. Sikorska; Asgeir Petersen-Øverleir; Trond Reitan; Jim E Freer; Benjamin Renard; Valentin Mansanarez; Robert R. Mason

Streamflow time series are commonly derived from stage-discharge rating curves, but theuncertainty of the rating curve and resulting streamflow series are poorly understood. While differentmethods to quantify uncertainty in the stage-discharge relationship exist, there is limited understanding ofhow uncertainty estimates differ between methods due to different assumptions and methodologicalchoices. We compared uncertainty estimates and stage-discharge rating curves from seven methods at threeriver locations of varying hydraulic complexity. Comparison of the estimated uncertainties revealed a widerange of estimates, particularly for high and low flows. At the simplest site on the Isere River (France), fullwidth 95% uncertainties for the different methods ranged from 3 to 17% for median flows. In contrast,uncertainties were much higher and ranged from 41 to 200% for high flows in an extrapolated section of therating curve at the Mahurangi River (New Zealand) and 28 to 101% for low flows at the Taf River (UnitedKingdom), where the hydraulic control is unstable at low flows. Differences between methods result fromdifferences in the sources of uncertainty considered, differences in the handling of the time-varying nature ofrating curves, differences in the extent of hydraulic knowledge assumed, and differences in assumptionswhen extrapolating rating curves above or below the observed gaugings. Ultimately, the selection of anuncertainty method requires a match between user requirements and the assumptions made by theuncertainty method. Given the signi ficant differences in uncertainty estimates between methods, we suggestthat a clear statement of uncertainty assumptions be presented alongside streamflow uncertainty estimates.


Hydrology and Earth System Sciences Discussions | 2018

Using paired catchments to quantify the human influence on hydrological droughts

Sally Rangecroft; Anne F. Van Loon; Gemma Coxon; José Agustín Breña-Naranjo; Floris van Ogtrop; Henny A. J. Van Lanen

Quantifying the influence of human activities, such as reservoir building, water abstraction, and land use change, on hydrology is crucial for sustainable future water management, especially during drought. Model-based methods are very time-consuming to set up and require a good understanding of human processes and time series of water abstraction, land use change, and water infrastructure and management, which often are not available. Therefore, observation-based methods are being developed that give an indication of the direction and magnitude of the human influence on hydrological drought based on limited data. We suggest adding to those methods a “paired-catchment” approach, based on the classic hydrology approach that was developed in the 1920s for assessing the impact of land cover treatment on water quantity and quality. When applying the pairedcatchment approach to long-term pre-existing human influences trying to detect an influence on extreme events such as droughts, a good catchment selection is crucial. The disturbed catchment needs to be paired with a catchment that is similar in all aspects except for the human activity under study, in that way isolating the effect of that specific activity. In this paper, we present a framework for selecting suitable paired catchments for the study of the human influence on hydrological drought. Essential elements in this framework are the availability of qualitative information on the human activity under study (type, timing, and magnitude), and the similarity of climate, geology, and other human influences between the catchments. We show the application of the framework on two contrasting case studies, one impacted by groundwater abstraction and one with a water transfer from another region. Applying the paired-catchment approach showed how the groundwater abstraction aggravated streamflow drought by more than 200 % for some metrics (total drought duration and total drought deficit) and the water transfer alleviated droughts with 25 % to 80 %, dependent on the metric. Benefits of the paired-catchment approach are that climate variability between preand postdisturbance periods does not have to be considered as the same time periods are used for analysis, and that it avoids assumptions considered when partly or fully relying on simulation modelling. Limitations of the approach are that finding a suitable catchment pair can be very challenging, often no pre-disturbance records are available to establish the natural difference between the catchments, and long time series of hydrological data are needed to robustly detect the effect of the human activities on hydrological drought. We suggest that the approach can be used for a first estimate of the human influence on hydrological drought, to steer campaigns to collect more data, and to complement and improve other existing methods (e.g. model-based or large-sample approaches). Published by Copernicus Publications on behalf of the European Geosciences Union. 1726 A. F. Van Loon et al.: Using paired catchments to quantify the human influence on hydrological droughts


Hydrological Processes | 2014

Diagnostic evaluation of multiple hypotheses of hydrological behaviour in a limits‐of‐acceptability framework for 24 UK catchments

Gemma Coxon; Jim E Freer; Thorsten Wagener; Nick Odoni; Martyn P. Clark


Water Resources Research | 2017

Quantifying local rainfall dynamics and uncertain boundary conditions into a nested regional‐local flood modeling system

María Bermúdez; Jeffrey C. Neal; Paul D. Bates; Gemma Coxon; Jim E Freer; Luis Cea; Jerónimo Puertas


Hydrology and Earth System Sciences | 2018

Effects of variability in probable maximum precipitation patterns on flood losses

Andreas Paul Zischg; Guido Felder; Rolf Weingartner; Niall Quinn; Gemma Coxon; Jeffrey C. Neal; Jim E Freer; Paul D. Bates

Collaboration


Dive into the Gemma Coxon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hilary McMillan

San Diego State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge