Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gen Kondoh is active.

Publication


Featured researches published by Gen Kondoh.


Molecular Cell | 1998

The Mouse RecA-like Gene Dmc1 Is Required for Homologous Chromosome Synapsis during Meiosis

Kayo Yoshida; Gen Kondoh; Yoichi Matsuda; Toshiyuki Habu; Yoshitake Nishimune; Takashi Morita

The mouse Dmc1 gene is an E. coli RecA homolog that is specifically expressed in meiosis. The DMC1 protein was detected in leptotene-to-zygotene spermatocytes, when homolog pairing likely initiates. Targeted gene disruption in the male mouse showed an arrest of meiosis of germ cells at the early zygotene stage, followed by apoptosis. In female mice lacking the Dmc1 gene, normal differentiation of oogenesis was aborted in embryos, and germ cells disappeared in the adult ovary. Meiotic chromosome analysis of Dmc1-deficient mouse spermatocytes revealed random spread of univalent axial elements without correct pairing between homologs. In rare cases, however, we observed complex pairing among nonhomologs. Thus, the mouse Dmc1 gene is required for homologous synapsis of chromosomes in meiosis.


FEBS Letters | 2000

A novel reporter mouse strain that expresses enhanced green fluorescent protein upon Cre‐mediated recombination

Shunsuke Kawamoto; Hitoshi Niwa; Fumi Tashiro; Shigetoshi Sano; Gen Kondoh; Junji Takeda; Koichi Tabayashi; Jun-ichi Miyazaki

The success of Cre‐mediated conditional gene targeting depends on the specificity of Cre recombinase expression in Cre‐transgenic mouse lines. As a tool to evaluate the specificity of Cre expression, we developed a reporter transgenic mouse strain that expresses enhanced green fluorescent protein (EGFP) upon Cre‐mediated recombination. We demonstrate that the progeny resulting from a cross between this reporter strain and a transgenic strain expressing Cre in zygotes show ubiquitous EGFP fluorescence. This reporter strain should be useful to monitor the Cre expression directed by various promoters in transgenic mice, including mice in which Cre is expressed transiently during embryogenesis under a developmentally regulated promoter.


Developmental Cell | 2009

The TDRD9-MIWI2 Complex Is Essential for piRNA-Mediated Retrotransposon Silencing in the Mouse Male Germline

Masanobu Shoji; Takashi Tanaka; Mihoko Hosokawa; Michael Reuter; Alexander Stark; Yuzuru Kato; Gen Kondoh; Katsuya Okawa; Takeshi Chujo; Tsutomu Suzuki; Kenichiro Hata; Sandra L. Martin; Toshiaki Noce; Satomi Kuramochi-Miyagawa; Toru Nakano; Hiroyuki Sasaki; Ramesh S. Pillai; Norio Nakatsuji; Shinichiro Chuma

Host-defense mechanisms against transposable elements are critical to protect the genome information. Here we show that tudor-domain containing 9 (Tdrd9) is essential for silencing Line-1 retrotransposon in the mouse male germline. Tdrd9 encodes an ATPase/DExH-type helicase, and its mutation causes male sterility showing meiotic failure. In Tdrd9 mutants, Line-1 was highly activated and piwi-interacting small RNAs (piRNAs) corresponding to Line-1 were increased, suggesting that feedforward amplification operates in the mutant. In fetal testes, Tdrd9 mutation causes Line-1 desilencing and an aberrant piRNA profile in prospermatogonia, followed by cognate DNA demethylation. TDRD9 complexes with MIWI2 with distinct compartmentalization in processing bodies, and this TDRD9-MIWI2 localization is regulated by MILI and TDRD1 residing at intermitochondrial cement. Our results identify TDRD9 as a functional partner of MIWI2 and indicate that the tudor-piwi association is a conserved feature, while two separate axes, TDRD9-MIWI2 and TDRD1-MILI, cooperate nonredundantly in the piwi-small RNA pathway in the mouse male germline.


Molecular and Cellular Biology | 2004

p38α Mitogen-Activated Protein Kinase Plays a Critical Role in Cardiomyocyte Survival but Not in Cardiac Hypertrophic Growth in Response to Pressure Overload

Kazuhiko Nishida; Osaniu Yamaguchi; Shinichi Hirotani; Shungo Hikoso; Yoshiharu Higuchi; Tetsuya Watanabe; Toshihiro Takeda; Soh Osuka; Takashi Morita; Gen Kondoh; Yoshihiro Uno; Kazunori Kashiwase; Masayuki Taniike; Atsuko Nakai; Yasushi Matsumura; Jun-ichi Miyazaki; Tatsuhiko Sudo; Kenichi Hongo; Yoichiro Kusakari; Satoshi Kurihara; Kenneth R. Chien; Junji Takeda; Masatsugu Hori; Kinya Otsu

ABSTRACT The molecular mechanism for the transition from cardiac hypertrophy, an adaptive response to biomechanical stress, to heart failure is poorly understood. The mitogen-activated protein kinase p38α is a key component of stress response pathways in various types of cells. In this study, we attempted to explore the in vivo physiological functions of p38α in hearts. First, we generated mice with floxed p38α alleles and crossbred them with mice expressing the Cre recombinase under the control of the α-myosin heavy-chain promoter to obtain cardiac-specific p38α knockout mice. These cardiac-specific p38α knockout mice were born normally, developed to adulthood, were fertile, exhibited a normal life span, and displayed normal global cardiac structure and function. In response to pressure overload to the left ventricle, they developed significant levels of cardiac hypertrophy, as seen in controls, but also developed cardiac dysfunction and heart dilatation. This abnormal response to pressure overload was accompanied by massive cardiac fibrosis and the appearance of apoptotic cardiomyocytes. These results demonstrate that p38α plays a critical role in the cardiomyocyte survival pathway in response to pressure overload, while cardiac hypertrophic growth is unaffected despite its dramatic down-regulation.


Nature Medicine | 2005

Angiotensin-converting enzyme is a GPI-anchored protein releasing factor crucial for fertilization

Gen Kondoh; Hiromasa Tojo; Yuka Nakatani; Nobuyasu Komazawa; Chie Murata; Kazuo Yamagata; Yusuke Maeda; Taroh Kinoshita; Masaru Okabe; Ryo Taguchi; Junji Takeda

The angiotensin-converting enzyme (ACE) is a key regulator of blood pressure. It is known to cleave small peptides, such as angiotensin I and bradykinin and changes their biological activities, leading to upregulation of blood pressure. Here we describe a new activity for ACE: a glycosylphosphatidylinositol (GPI)-anchored protein releasing activity (GPIase activity). Unlike its peptidase activity, GPIase activity is weakly inhibited by the tightly binding ACE inhibitor and not inactivated by substitutions of core amino acid residues for the peptidase activity, suggesting that the active site elements for GPIase differ from those for peptidase activity. ACE shed various GPI-anchored proteins from the cell surface, and the process was accelerated by the lipid raft disruptor filipin. The released products carried portions of the GPI anchor, indicating cleavage within the GPI moiety. Further analysis by high-performance liquid chromatography–mass spectrometry predicted the cleavage site at the mannose-mannose linkage. GPI-anchored proteins such as TESP5 and PH-20 were released from the sperm membrane of wild-type mice but not in Ace knockout sperm in vivo. Moreover, peptidase-inactivated E414D mutant ACE and also PI-PLC rescued the egg-binding deficiency of Ace knockout sperms, implying that ACE plays a crucial role in fertilization through this activity.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Efficient chromosomal transposition of a Tc1/mariner- like transposon Sleeping Beauty in mice

Kyoji Horie; Asato Kuroiwa; Masahito Ikawa; Masaru Okabe; Gen Kondoh; Yoichi Matsuda; Junji Takeda

The presence of mouse embryonic stem (ES) cells makes the mouse a powerful model organism for reverse genetics, gene function study through mutagenesis of specific genes. In contrast, forward genetics, identification of mutated genes responsible for specific phenotypes, has an advantage to uncover novel pathways and unknown genes because no a priori assumptions are made about the mutated genes. However, it has been hampered in mice because of the lack of a system in which a large-scale mutagenesis and subsequent isolation of mutated genes can be performed efficiently. Here, we demonstrate the efficient chromosomal transposition of a Tc1/mariner-like transposon, Sleeping Beauty, in mice. This system allows germ-line mutagenesis in vivo and will facilitate certain aspects of phenotype-driven genetic screening in mice.


Molecular and Cellular Biology | 2003

Characterization of Sleeping Beauty Transposition and Its Application to Genetic Screening in Mice

Kyoji Horie; Kosuke Yusa; Kojiro Yae; Junko Odajima; Sylvia E. J. Fischer; Vincent W. Keng; Tomoko Hayakawa; Sumi Mizuno; Gen Kondoh; Takashi W. Ijiri; Yoichi Matsuda; Ronald H.A. Plasterk; Junji Takeda

ABSTRACT The use of mutant mice plays a pivotal role in determining the function of genes, and the recently reported germ line transposition of the Sleeping Beauty (SB) transposon would provide a novel system to facilitate this approach. In this study, we characterized SB transposition in the mouse germ line and assessed its potential for generating mutant mice. Transposition sites not only were clustered within 3 Mb near the donor site but also were widely distributed outside this cluster, indicating that the SB transposon can be utilized for both region-specific and genome-wide mutagenesis. The complexity of transposition sites in the germ line was high enough for large-scale generation of mutant mice. Based on these initial results, we conducted germ line mutagenesis by using a gene trap scheme, and the use of a green fluorescent protein reporter made it possible to select for mutant mice rapidly and noninvasively. Interestingly, mice with mutations in the same gene, each with a different insertion site, were obtained by local transposition events, demonstrating the feasibility of the SB transposon system for region-specific mutagenesis. Our results indicate that the SB transposon system has unique features that complement other mutagenesis approaches.


FEBS Letters | 2002

Targeted disruption of LIG-1 gene results in psoriasiform epidermal hyperplasia1

Yutaka Suzuki; Hiroyuki Miura; Atsushi Tanemura; Kinji Kobayashi; Gen Kondoh; Shigetoshi Sano; Kentaro Ozawa; Shigeki Inui; Aya Nakata; Tsutomu Takagi; Masaya Tohyama; Kunihiko Yoshikawa; Satoshi Itami

The gene encoding a transmembrane glycoprotein LIG‐1, of which the extracellular region was organized with the leucine‐rich repeats and immunoglobulin‐like domains, was disrupted in mice by gene targeting. LIG‐1‐deficient mice developed a skin change on the tail and facial area after birth. The affected skin was histologically reminiscent of the epidermis in human common skin disease ‘psoriasis’. LIG‐1 was expressed in basal cells of the epidermis and outer root sheath cells of hair follicles in mice. Interestingly, the LIG‐1 expression was apparently down‐regulated in the psoriatic lesions, suggesting that LIG‐1 inversely correlates with proliferative ability of epidermal keratinocytes.


Journal of Cell Science | 2003

Infertility in female mice with an oocyte-specific knockout of GPI-anchored proteins

Jennifer A. Alfieri; Arlan D. Martin; Junji Takeda; Gen Kondoh; Diana G. Myles; Paul Primakoff

Glycosylphosphatidylinositol-anchored proteins on the egg surface have been proposed to play a role in gamete fusion on the basis of in vitro experiments. We tested this hypothesis by asking if oocyte GPI-anchored proteins are required for fertilization in vivo. Oocyte-specific knockout mice were created using the Cre/loxP system to delete a portion of the Pig-a gene, which encodes an enzyme involved in GPI anchor biosynthesis. Conditional Pig-a-knockout females are infertile, and eggs recovered from the females after mating are unfertilized. In in vitro assays, the knockout eggs are severely deficient in their ability to fuse with sperm. These results demonstrate that GPI-anchored proteins are required for gamete fusion. Loss of the GPI-anchored complement of plasma membrane proteins could prevent fusion by altering the organization and function of GPI-anchored protein-containing lipid domains. Alternatively, a single GPI-anchored protein may be required in the fusion process. To distinguish between these possibilities, we have begun to identify the GPI-anchored proteins on the egg surface. We have identified one egg GPI-anchored protein as CD55, an ∼70 kDa complement regulatory protein. It has previously been found that CD55-knockout mice are fertile, demonstrating that CD55 is not essential for fertilization. This finding also means that the presence of the full complement of egg GPI-anchored proteins is not necessary for gamete fusion. Other egg GPI-anchored proteins acting in the fusion process can now be investigated, with the goal of understanding the mechanism of their function in sperm-egg fusion.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Tudor domain containing 7 (Tdrd7) is essential for dynamic ribonucleoprotein (RNP) remodeling of chromatoid bodies during spermatogenesis

Takashi Tanaka; Mihoko Hosokawa; Vasily V. Vagin; Michael Reuter; Eri Hayashi; Ayako L. Mochizuki; Kouichi Kitamura; Hidenori Yamanaka; Gen Kondoh; Katsuya Okawa; Satomi Kuramochi-Miyagawa; Toru Nakano; Ravi Sachidanandam; Gregory J. Hannon; Ramesh S. Pillai; Norio Nakatsuji; Shinichiro Chuma

In the male germline in mammals, chromatoid bodies, a specialized assembly of cytoplasmic ribonucleoprotein (RNP), are structurally evident during meiosis and haploidgenesis, but their developmental origin and regulation remain elusive. The tudor domain containing proteins constitute a conserved class of chromatoid body components. We show that tudor domain containing 7 (Tdrd7), the deficiency of which causes male sterility and age-related cataract (as well as glaucoma), is essential for haploid spermatid development and defines, in concert with Tdrd6, key biogenesis processes of chromatoid bodies. Single and double knockouts of Tdrd7 and Tdrd6 demonstrated that these spermiogenic tudor genes orchestrate developmental programs for ordered remodeling of chromatoid bodies, including the initial establishment, subsequent RNP fusion with ubiquitous processing bodies/GW bodies and later structural maintenance. Tdrd7 suppresses LINE1 retrotransposons independently of piwi-interacting RNA (piRNA) biogenesis wherein Tdrd1 and Tdrd9 operate, indicating that distinct Tdrd pathways act against retrotransposons in the male germline. Tdrd6, in contrast, does not affect retrotransposons but functions at a later stage of spermiogenesis when chromatoid bodies exhibit aggresome-like properties. Our results delineate that chromatoid bodies assemble as an integrated compartment incorporating both germline and ubiquitous features as spermatogenesis proceeds and that the conserved tudor family genes act as master regulators of this unique RNP remodeling, which is genetically linked to the male germline integrity in mammals.

Collaboration


Dive into the Gen Kondoh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge