Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Genaro Barrientos is active.

Publication


Featured researches published by Genaro Barrientos.


Journal of Biological Chemistry | 2006

A transverse tubule NADPH oxidase activity stimulates calcium release from isolated triads via ryanodine receptor type 1 S-Glutathionylation

Cecilia Hidalgo; Gina Sánchez; Genaro Barrientos; Paula Aracena-Parks

We report here the presence of an NADPH oxidase (NOX) activity both in intact and in isolated transverse tubules and in triads isolated from mammalian skeletal muscle, as established by immunochemical, enzymatic, and pharmacological criteria. Immunohistochemical determinations with NOX antibodies showed that the gp91phox membrane subunit and the cytoplasmic regulatory p47phox subunit co-localized in transverse tubules of adult mice fibers with the α1s subunit of dihydropyridine receptors. Western blot analysis revealed that isolated triads contained the integral membrane subunits gp91phox and p22phox, which were markedly enriched in isolated transverse tubules but absent from junctional sarcoplasmic reticulum vesicles. Isolated triads and transverse tubules, but not junctional sarcoplasmic reticulum, also contained varying amounts of the cytoplasmic NOX regulatory subunits p47phox and p67phox. NADPH or NADH elicited superoxide anion and hydrogen peroxide generation by isolated triads; both activities were inhibited by NOX inhibitors but not by rotenone. NADH diminished the total thiol content of triads by one-third; catalase or apocynin, a NOX inhibitor, prevented this effect. NADPH enhanced the activity of ryanodine receptor type 1 (RyR1) in triads, measured through [3H]ryanodine binding and calcium release kinetics, and increased significantly RyR1 S-glutathionylation over basal levels. Preincubation with reducing agents or NOX inhibitors abolished the enhancement of RyR1 activity produced by NADPH and prevented NADPH-induced RyR1 S-glutathionylation. We propose that reactive oxygen species generated by the transverse tubule NOX activate via redox modification the neighboring RyR1 Ca2+ release channels. Possible implications of this putative mechanism for skeletal muscle function are discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Triclosan impairs excitation–contraction coupling and Ca2+ dynamics in striated muscle

Gennady Cherednichenko; Rui Zhang; Roger A. Bannister; Valeriy Timofeyev; Ning Li; Erika B. Fritsch; Wei Feng; Genaro Barrientos; Nils Helge Schebb; Bruce D. Hammock; Kurt G. Beam; Nipavan Chiamvimonvat; Isaac N. Pessah

Triclosan (TCS), a high-production-volume chemical used as a bactericide in personal care products, is a priority pollutant of growing concern to human and environmental health. TCS is capable of altering the activity of type 1 ryanodine receptor (RyR1), but its potential to influence physiological excitation–contraction coupling (ECC) and muscle function has not been investigated. Here, we report that TCS impairs ECC of both cardiac and skeletal muscle in vitro and in vivo. TCS acutely depresses hemodynamics and grip strength in mice at doses ≥12.5 mg/kg i.p., and a concentration ≥0.52 μM in water compromises swimming performance in larval fathead minnow. In isolated ventricular cardiomyocytes, skeletal myotubes, and adult flexor digitorum brevis fibers TCS depresses electrically evoked ECC within ∼10–20 min. In myotubes, nanomolar to low micromolar TCS initially potentiates electrically evoked Ca2+ transients followed by complete failure of ECC, independent of Ca2+ store depletion or block of RyR1 channels. TCS also completely blocks excitation-coupled Ca2+ entry. Voltage clamp experiments showed that TCS partially inhibits L-type Ca2+ currents of cardiac and skeletal muscle, and [3H]PN200 binding to skeletal membranes is noncompetitively inhibited by TCS in the same concentration range that enhances [3H]ryanodine binding. TCS potently impairs orthograde and retrograde signaling between L-type Ca2+ and RyR channels in skeletal muscle, and L-type Ca2+ entry in cardiac muscle, revealing a mechanism by which TCS weakens cardiac and skeletal muscle contractility in a manner that may negatively impact muscle health, especially in susceptible populations.


Molecular Pharmacology | 2009

The Na+/Ca2+ Exchange Inhibitor 2-(2-(4-(4-Nitrobenzyloxy)phenyl)ethyl)isothiourea Methanesulfonate (KB-R7943) Also Blocks Ryanodine Receptors Type 1 (RyR1) and Type 2 (RyR2) Channels

Genaro Barrientos; Diptiman D. Bose; Wei Feng; Isela T. Padilla; Isaac N. Pessah

Na+/Ca2+ exchanger (NCX) is a plasma membrane transporter that moves Ca2+ in or out of the cell, depending on membrane potential and transmembrane ion gradients. NCX is the main pathway for Ca2+ extrusion from excitable cells. NCX inhibitors can ameliorate cardiac ischemia-reperfusion injury and promote high-frequency fatigue of skeletal muscle, purportedly by inhibiting the Ca2+ inward mode of NCX. Here we tested two known NCX inhibitors, 2-(2-(4-(4-nitrobenzyloxy)phenyl)ethyl)-isothiourea methanesulfonate (KB-R7943) and the structurally related 2-[[4-[(4-Nitrophenyl)methoxy]phenyl]methyl]-4-thiazoli dinecarboxylic acid ethyl ester (SN-6), for their influence on electrically or caffeine-evoked Ca2+ transients in adult dissociated flexor digitorum brevis (FDB) skeletal muscle fibers and human embryonic kidney (HEK) 293 cells that have stable expression of type 1 ryanodine receptor (RyR1). KB-R7943 (≤10 μM) reversibly attenuates electrically evoked Ca2+ transients in FDB and caffeine-induced Ca2+ release in HEK 293, whereas the structurally related NCX inhibitor SN-6 does not, suggesting that KB-R7943 directly inhibits RyR1. In support of this interpretation, KB-R7943 inhibits high-affinity binding of [3H]ryanodine to RyR1 (IC50 = 5.1 ± 0.9 μM) and the cardiac isoform RyR2 (IC50 = 13.4 ± 1.8 μM). KB-R7943 interfered with the gating of reconstituted RyR1 and RyR2 channels, reducing open probability (Po), shortening mean open time, and prolonging mean closed time. KB-R7943 was more effective at blocking RyR1 with cytoplasmic conditions favoring high Po compared with those favoring low Po. SN-6 has negligible activity toward altering [3H]ryanodine binding of RyR1 and RyR2. Our results identify that KB-R7943 is a reversible, activity-dependent blocker of the two most broadly expressed RyR channel isoforms and contributes to its pharmacological and therapeutic activities.


Journal of Biological Chemistry | 2011

Basal Bioenergetic Abnormalities in Skeletal Muscle from Ryanodine Receptor Malignant Hyperthermia-susceptible R163C Knock-in Mice

Cecilia Giulivi; Catherine Ross-Inta; Alicja Omanska-Klusek; Eleonora Napoli; Danielle Sakaguchi; Genaro Barrientos; Paul D. Allen; Isaac N. Pessah

Malignant hyperthermia (MH) and central core disease in humans have been associated with mutations in the skeletal ryanodine receptor (RyR1). Heterozygous mice expressing the human MH/central core disease RyR1 R163C mutation exhibit MH when exposed to halothane or heat stress. Considering that many MH symptoms resemble those that could ensue from a mitochondrial dysfunction (e.g. metabolic acidosis and hyperthermia) and that MH-susceptible mice or humans have a higher than normal cytoplasmic Ca2+ concentration at rest, we evaluated the role of mitochondria in skeletal muscle from R163C compared with wild type mice under basal (untriggered) conditions. R163C skeletal muscle exhibited a significant increase in matrix Ca2+, increased reactive oxygen species production, lower expression of mitochondrial proteins, and higher mtDNA copy number. These changes, in conjunction with lower myoglobin and glycogen contents, Myh4 and GAPDH transcript levels, GAPDH activity, and lower glucose utilization suggested a switch to a compromised bioenergetic state characterized by both low oxidative phosphorylation and glycolysis. The shift in bioenergetic state was accompanied by a dysregulation of Ca2+-responsive signaling pathways regulated by calcineurin and ERK1/2. Chronically elevated resting Ca2+ in R163C skeletal muscle elicited the maintenance of a fast-twitch fiber program and the development of insulin resistance-like phenotype as part of a metabolic adaptation to the R163C RyR1 mutation.


Molecular Pharmacology | 2011

Functional and Biochemical Properties of Ryanodine Receptor Type 1 Channels from Heterozygous R163C Malignant Hyperthermia-Susceptible Mice

Wei Feng; Genaro Barrientos; Gennady Cherednichenko; Tianzhong Yang; Isela T. Padilla; Kim Truong; Paul D. Allen; Jose R. Lopez; Isaac N. Pessah

Mutations in ryanodine receptor type 1 (RyR1) confer malignant hyperthermia susceptibility. How inherent impairments in Ca2+ channel regulation affect skeletal muscle function in myotubes and adult fibers under basal (nontriggering) conditions are not understood. Myotubes, adult flexor digitorum brevis (FDB) fibers, and sarcoplasmic reticulum skeletal membranes were isolated from heterozygous knockin R163C and wild-type (WT) mice. Compared with WT myotubules, R163C myotubes have reduced Ca2+ transient amplitudes in response to electrical field pulses; however, R163C FDB fibers do not differ in their responses to electrical stimuli, despite heightened cellular cytoplasmic resting Ca2+ ([Ca2+]rest) and sensitivity to halothane. Immunoblotting of membranes from each genotype shows similar expression of RyR1, FK506 binding protein 12 kDa, and Ca2+-ATPase, but RyR1 2844Ser phosphorylation in R163C muscle is 31% higher than that of WT muscle (p < 0.001). RyR1 channels reconstituted in planar lipid bilayers reveal ∼65% of R163C channels exhibit ≥2-fold greater open probability (Po) than WT, with prolonged mean open dwell times and shortened closed dwell times. [3H]Ryanodine (Ry) binding and single-channel analyses show that R163C-RyR1 has altered regulation compared with WT: 1) 3-fold higher sensitivity to Ca2+ activation; 2) 2-fold greater [3H]Ry receptor occupancy; 3) comparatively higher channel activity, even in reducing glutathione buffer; 4) enhanced RyR1 activity both at 25 and 37°C; and 5) elevated cytoplasmic [Ca2+]rest. R163C channels are inherently more active than WT channels, a functional impairment that cannot be reversed by dephosphorylation with protein phosphatase. Dysregulated R163C channels produce a more overt phenotype in myotubes than in adult fibers in the absence of triggering agents, suggesting tighter negative regulation of R163C-RyR1 within the Ca2+ release unit of adult fibers.


Journal of Biological Chemistry | 2012

Gene-dose influences cellular and calcium channel dysregulation in heterozygous and homozygous T4826I-RYR1 malignant hyperthermia susceptible muscle

Genaro Barrientos; Wei Feng; Kim Truong; Klaus I. Matthaei; Tianzhong Yang; Paul D. Allen; Jose R. Lopez; Isaac N. Pessah

Background: Muscle from heterozygous and homozygous T4826I-RYR1 MH-susceptible mice is investigated for biochemical and cellular abnormalities. Results: T4826I-RYR1 gene dose determines severity of [Ca2+]rest, mitochondrial, EC coupling, and Ca2+ channel impairments. Conclusion: T4826I-RYR1 channel dysfunction is regulated in vivo but imparts susceptibility to environmental triggers. Significance: T4826I-RYR1 is sufficient to confer MHS strongly dependent on gene dose. Malignant hyperthermia susceptibility (MHS) is primarily conferred by mutations within ryanodine receptor type 1 (RYR1). Here we address how the MHS mutation T4826I within the S4-S5 linker influences excitation-contraction coupling and resting myoplasmic Ca2+ concentration ([Ca2+]rest) in flexor digitorum brevis (FDB) and vastus lateralis prepared from heterozygous (Het) and homozygous (Hom) T4826I-RYR1 knock-in mice (Yuen, B. T., Boncompagni, S., Feng, W., Yang, T., Lopez, J. R., Matthaei, K. I., Goth, S. R., Protasi, F., Franzini-Armstrong, C., Allen, P. D., and Pessah, I. N. (2011) FASEB J. doi:22131268). FDB responses to electrical stimuli and acute halothane (0.1%, v/v) exposure showed a rank order of Hom ≫ Het ≫ WT. Release of Ca2+ from the sarcoplasmic reticulum and Ca2+ entry contributed to halothane-triggered increases in [Ca2+]rest in Hom FDBs and elicited pronounced Ca2+ oscillations in ∼30% of FDBs tested. Genotype contributed significantly elevated [Ca2+]rest (Hom > Het > WT) measured in vivo using ion-selective microelectrodes. Het and Hom oxygen consumption rates measured in intact myotubes using the Seahorse Bioscience (Billerica, MA) flux analyzer and mitochondrial content measured with MitoTracker were lower than WT, whereas total cellular calpain activity was higher than WT. Muscle membranes did not differ in RYR1 expression nor in Ser2844 phosphorylation among the genotypes. Single channel analysis showed highly divergent gating behavior with Hom and WT favoring open and closed states, respectively, whereas Het exhibited heterogeneous gating behaviors. [3H]Ryanodine binding analysis revealed a gene dose influence on binding density and regulation by Ca2+, Mg2+, and temperature. Pronounced abnormalities inherent in T4826I-RYR1 channels confer MHS and promote basal disturbances of excitation-contraction coupling, [Ca2+]rest, and oxygen consumption rates. Considering that both Het and Hom T4826I-RYR1 mice are viable, the remarkable isolated single channel dysfunction mediated through this mutation in S4-S5 cytoplasmic linker must be highly regulated in vivo.


PLOS ONE | 2016

GSK-3β/NFAT Signaling is involved in testosterone-induced cardiac myocyte hypertrophy

Javier Duran; Cesar Oyarce; Mario Pavez; Denisse Valladares; Carla Basualto-Alarcón; Daniel Lagos; Genaro Barrientos; Mayarling Troncoso; Cristián Ibarra; Manuel Estrada; Paula A. da Costa Martins

Testosterone induces cardiac hypertrophy through a mechanism that involves a concerted crosstalk between cytosolic and nuclear signaling pathways. Nuclear factor of activated T-cells (NFAT) is associated with the promotion of cardiac hypertrophy, glycogen synthase kinase-3β (GSK-3β) is considered to function as a negative regulator, mainly by modulating NFAT activity. However, the role played by calcineurin-NFAT and GSK-3β signaling in testosterone-induced cardiac hypertrophy has remained unknown. Here, we determined that testosterone stimulates cardiac myocyte hypertrophy through NFAT activation and GSK-3β inhibition. Testosterone increased the activity of NFAT-luciferase (NFAT-Luc) in a time- and dose-dependent manner, with the activity peaking after 24 h of stimulation with 100 nM testosterone. NFAT-Luc activity induced by testosterone was blocked by the calcineurin inhibitors FK506 and cyclosporine A and by 11R-VIVIT, a specific peptide inhibitor of NFAT. Conversely, testosterone inhibited GSK-3β activity as determined by increased GSK-3β phosphorylation at Ser9 and β-catenin protein accumulation, and also by reduction in β-catenin phosphorylation at residues Ser33, Ser37, and Thr41. GSK-3β inhibition with 1-azakenpaullone or a GSK-3β-targeting siRNA increased NFAT-Luc activity, whereas overexpression of a constitutively active GSK-3β mutant (GSK-3βS9A) inhibited NFAT-Luc activation mediated by testosterone. Testosterone-induced cardiac myocyte hypertrophy was established by increased cardiac myocyte size and [3H]-leucine incorporation (as a measurement of cellular protein synthesis). Calcineurin-NFAT inhibition abolished and GSK-3β inhibition promoted the hypertrophy stimulated by testosterone. GSK-3β activation by GSK-3βS9A blocked the increase of hypertrophic markers induced by testosterone. Moreover, inhibition of intracellular androgen receptor prevented testosterone-induced NFAT-Luc activation. Collectively, these results suggest that cardiac myocyte hypertrophy induced by testosterone involves a cooperative mechanism that links androgen signaling with the recruitment of NFAT through calcineurin activation and GSK-3β inhibition.


International Journal of Molecular Sciences | 2018

High-Fat-Diet-Induced Obesity Produces Spontaneous Ventricular Arrhythmias and Increases the Activity of Ryanodine Receptors in Mice

Gina Sánchez; Felipe Araneda; Juan Peña; José Pablo Finkelstein; Jaime A. Riquelme; Luis Montecinos; Genaro Barrientos; Paola Llanos; Zully Pedrozo; Matilde Said; Ricardo Bull; Paulina Donoso

Ventricular arrhythmias are a common cause of sudden cardiac death, and their occurrence is higher in obese subjects. Abnormal gating of ryanodine receptors (RyR2), the calcium release channels of the sarcoplasmic reticulum, can produce ventricular arrhythmias. Since obesity promotes oxidative stress and RyR2 are redox-sensitive channels, we investigated whether the RyR2 activity was altered in obese mice. Mice fed a high fat diet (HFD) became obese after eight weeks and exhibited a significant increase in the occurrence of ventricular arrhythmias. Single RyR2 channels isolated from the hearts of obese mice were more active in planar bilayers than those isolated from the hearts of the control mice. At the molecular level, RyR2 channels from HFD-fed mice had substantially fewer free thiol residues, suggesting that redox modifications were responsible for the higher activity. Apocynin, provided in the drinking water, completely prevented the appearance of ventricular arrhythmias in HFD-fed mice, and normalized the activity and content of the free thiol residues of the protein. HFD increased the expression of NOX4, an isoform of NADPH oxidase, in the heart. Our results suggest that HFD increases the activity of RyR2 channels via a redox-dependent mechanism, favoring the appearance of ventricular arrhythmias.


PLOS ONE | 2015

Correction: Glucose-Dependent Insulin Secretion in Pancreatic β-Cell Islets from Male Rats Requires Ca2+ Release via ROS-Stimulated Ryanodine Receptorsmographic and Clinico-Epidemiological Features of Dengue Fever in Faisalabad, Pakistan

Paola Llanos; Ariel Contreras-Ferrat; Genaro Barrientos; Marco Valencia; David Mears; Cecilia Hidalgo


Proceedings of the National Academy of Sciences of the United States of America | 2012

Triclosan impairs excitation-contraction coupling and Ca2+ dynamics in striated muscle (Proceedings of the National Academy of Sciences of the United States of America (2012) 109, 35, (14158 -14163) DOI: 10.1073/pnas. 1211314109)

Gennady Cherednichenko; Rui Zhang; Roger A. Bannister; Valeriy Timofeyev; Ning Li; Erika B. Fritsch; Wei Feng; Genaro Barrientos; Nils Helge Schebb; Bruce D. Hammock; Kurt G. Beam; Nipavan Chiamvimonvat; Isaac N. Pessah

Collaboration


Dive into the Genaro Barrientos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul D. Allen

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Wei Feng

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cecilia Hidalgo

Centro de Estudios Científicos

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge