Gene A. Klaasen
University of Tennessee
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gene A. Klaasen.
Siam Journal on Applied Mathematics | 1984
Gene A. Klaasen; William C. Troy
We consider an extension of the FitzHugh–Nagumo model, namely the system \[ u_t = D_1 u_{xx} + f(u) - w,\qquad w_t = D_2 w_{xx} + \varepsilon (u - \gamma w) \] where
Siam Journal on Applied Mathematics | 1981
Gene A. Klaasen; William C. Troy
\varepsilon > 0,\gamma > 0,D_1 > 0,D_2 > 0
Siam Journal on Applied Mathematics | 1975
Gene A. Klaasen
and
Journal of Differential Equations | 1984
Gene A. Klaasen; William C. Troy
f(u)
Journal of Differential Equations | 1971
Gene A. Klaasen
is cubic. We allow
Siam Journal on Applied Mathematics | 1971
Lloyd K. Jackson; Gene A. Klaasen
\gamma
Siam Journal on Applied Mathematics | 1973
Gene A. Klaasen
to be large which implies that there are three constant solutions. We show that over an appropriate range of parameters the system has time independent pulse solutions and an infinite number of periodic solutions. Depending on the particular choice of parameters, we show that the pulse solution leads to either the first constant solution or the third constant solution.
Rocky Mountain Journal of Mathematics | 1986
Gene A. Klaasen
We investigate the behavior of solutions of the problem\[\begin{gathered} \frac{{\partial x}} {{\partial t}} = F( x,y ) + \frac{{D\partial ^2x }} {{\partial \zeta ^2 }},\quad \frac{{\partial y}} {{...
Rocky Mountain Journal of Mathematics | 1975
J. Michael Dolan; Gene A. Klaasen
Consider the Nth order differential equation
Siam Journal on Applied Mathematics | 1974
J. Michael Dolan; Gene A. Klaasen
( 1 )\qquad y^{( N )} = f\left( {t,y,y^1 , \cdots ,y^{( {N - 1} )} } \right)