Gene E. Ananiev
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gene E. Ananiev.
PLOS ONE | 2011
Gene E. Ananiev; Emily Cunningham Williams; Hongda Li; Qiang Chang
Rett syndrome (RTT) is an autism spectrum developmental disorder caused by mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene. Excellent RTT mouse models have been created to study the disease mechanisms, leading to many important findings with potential therapeutic implications. These include the identification of many MeCP2 target genes, better understanding of the neurobiological consequences of the loss- or mis-function of MeCP2, and drug testing in RTT mice and clinical trials in human RTT patients. However, because of potential differences in the underlying biology between humans and common research animals, there is a need to establish cell culture-based human models for studying disease mechanisms to validate and expand the knowledge acquired in animal models. Taking advantage of the nonrandom pattern of X chromosome inactivation in female induced pluripotent stem cells (iPSC), we have generated isogenic pairs of wild type and mutant iPSC lines from several female RTT patients with common and rare RTT mutations. R294X (arginine 294 to stop codon) is a common mutation carried by 5–6% of RTT patients. iPSCs carrying the R294X mutation has not been studied. We differentiated three R294X iPSC lines and their isogenic wild type control iPSC into neurons with high efficiency and consistency, and observed characteristic RTT pathology in R294X neurons. These isogenic iPSC lines provide unique resources to the RTT research community for studying disease pathology, screening for novel drugs, and testing toxicology.
Nature Protocols | 2007
Jill Herschleb; Gene E. Ananiev; David C. Schwartz
This protocol describes pulsed-field gel electrophoresis (PFGE), a method developed for separation of large DNA molecules. Whereas standard DNA gel electrophoresis commonly resolves fragments up to ∼50 kb in size, PFGE fractionates DNA molecules up to 10 Mb. The mechanism driving these separations exploits the fact that very large DNA molecules unravel and “snake” through a gel matrix, and such electrophoretic trajectories are perturbed in a size-dependent manner by carefully oriented electrical pulses. PFGE has enabled the rapid genomic analysis of microbes and mammalian cells, and motivated development of large-insert cloning systems such as bacterial and yeast artificial chromosomes. As such, this protocol includes descriptions of two types of PFGE instrumentation (not commercially available), along with detailed instructions for their operation. Additionally, this protocol provides basic instructions for the preparation of intact chromosomal DNA from several types of organisms. PFGE takes 2–3 days, excluding sample preparation.
Human Molecular Genetics | 2014
Emily Cunningham Williams; Xiaofen Zhong; Ahmed Mohamed; Ronghui Li; Yan Liu; Qiping Dong; Gene E. Ananiev; Jonathan Chern Choong Mok; Benjamin Ray Lin; Jianfeng Lu; Cassandra Chiao; Rachel Cherney; Hongda Li; Su-Chun Zhang; Qiang Chang
The disease mechanism of Rett syndrome (RTT) is not well understood. Studies in RTT mouse models have suggested a non-cell-autonomous role for astrocytes in RTT pathogenesis. However, it is not clear whether this is also true for human RTT astrocytes. To establish an in vitro human RTT model, we previously generated isogenic induced pluripotent stem cell (iPSC) lines from several RTT patients carrying different disease-causing mutations. Here, we show that these RTT iPSC lines can be efficiently differentiated into astroglial progenitors and glial fibrillary acidic protein-expressing (GFAP(+)) astrocytes that maintain isogenic status, that mutant RTT astrocytes carrying three different RTT mutations and their conditioned media have adverse effects on the morphology and function of wild-type neurons and that the glial effect on neuronal morphology is independent of the intrinsic neuronal deficit in mutant neurons. Moreover, we show that both insulin-like growth factor 1 (IGF-1) and GPE (a peptide containing the first 3 amino acids of IGF-1) are able to partially rescue the neuronal deficits caused by mutant RTT astrocytes. Our findings confirm the critical glial contribution to RTT pathology, reveal potential cellular targets of IGF-1 therapy and further validate patient-specific iPSCs and their derivatives as valuable tools to study RTT disease mechanism.
BMC Molecular Biology | 2008
Gene E. Ananiev; Steve Goldstein; Rod Runnheim; Dan Forrest; Shiguo Zhou; Konstantinos Potamousis; Chris Churas; Veit Bergendahl; James A. Thomson; David C. Schwartz
BackgroundMethylation of CpG dinucleotides is a fundamental mechanism of epigenetic regulation in eukaryotic genomes. Development of methods for rapid genome wide methylation profiling will greatly facilitate both hypothesis and discovery driven research in the field of epigenetics. In this regard, a single molecule approach to methylation profiling offers several unique advantages that include elimination of chemical DNA modification steps and PCR amplification.ResultsA single molecule approach is presented for the discernment of methylation profiles, based on optical mapping. We report results from a series of pilot studies demonstrating the capabilities of optical mapping as a platform for methylation profiling of whole genomes. Optical mapping was used to discern the methylation profile from both an engineered and wild type Escherichia coli. Furthermore, the methylation status of selected loci within the genome of human embryonic stem cells was profiled using optical mapping.ConclusionThe optical mapping platform effectively detects DNA methylation patterns. Due to single molecule detection, optical mapping offers significant advantages over other technologies. This advantage stems from obviation of DNA modification steps, such as bisulfite treatment, and the ability of the platform to assay repeat dense regions within mammalian genomes inaccessible to techniques using array-hybridization technologies.
Stem Cells | 2017
Meng Li; Huashan Zhao; Gene E. Ananiev; Michael T. Musser; Kathryn H. Ness; Dianne L. Maglaque; Krishanu Saha; Anita Bhattacharyya; Xinyu Zhao
Human patient‐derived induced pluripotent stem cells (hiPSCs) provide unique opportunities for disease modeling and drug development. However, adapting hiPSCs or their differentiated progenies to high throughput assays for phenotyping or drug screening has been challenging. Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and a major genetic cause of autism. FXS is caused by mutational trinucleotide expansion in the FMR1 gene leading to hypermethylation and gene silencing. One potential therapeutic strategy is to reactivate the silenced FMR1 gene, which has been attempted using both candidate chemicals and cell‐based screening. However, molecules that effectively reactivate the silenced FMR1 gene are yet to be identified; therefore, a high throughput unbiased screen is needed. Here we demonstrate the creation of a robust FMR1‐Nluc reporter hiPSC line by knocking in a Nano luciferase (Nluc) gene into the endogenous human FMR1 gene using the CRISPR/Cas9 genome editing method. We confirmed that luciferase activities faithfully report FMR1 gene expression levels and showed that neural progenitor cells derived from this line could be optimized for high throughput screening. The FMR1‐Nluc reporter line is a good resource for drug screening as well as for testing potential genetic reactivation strategies. In addition, our data provide valuable information for the generation of knockin human iPSC reporter lines for disease modeling, drug screening, and mechanistic studies. Stem Cells 2017;35:158–169
PLOS ONE | 2014
Shakti A. Goel; Lian-Wang Guo; Bowen Wang; Song Guo; Drew A. Roenneburg; Gene E. Ananiev; F. Michael Hoffmann; K. Craig Kent
Intimal hyperplasia is the cause of the recurrent occlusive vascular disease (restenosis). Drugs currently used to treat restenosis effectively inhibit smooth muscle cell (SMC) proliferation, but also inhibit the growth of the protective luminal endothelial cell (EC) lining, leading to thrombosis. To identify compounds that selectively inhibit SMC versus EC proliferation, we have developed a high-throughput screening (HTS) format using human cells and have employed this to screen a multiple compound collection (NIH Clinical Collection). We developed an automated, accurate proliferation assay in 96-well plates using human aortic SMCs and ECs. Using this HTS format we screened a 447-drug NIH Clinical Library. We identified 11 compounds that inhibited SMC proliferation greater than 50%, among which idarubicin exhibited a unique feature of preferentially inhibiting SMC versus EC proliferation. Concentration-response analysis revealed this differential effect most evident over an ∼10 nM-5 µM window. In vivo testing of idarubicin in a rat carotid injury model at 14 days revealed an 80% reduction of intimal hyperplasia and a 45% increase of lumen size with no significant effect on re-endothelialization. Taken together, we have established a HTS assay of human vascular cell proliferation, and identified idarubicin as a selective inhibitor of SMC versus EC proliferation both in vitro and in vivo. Screening of larger and more diverse compound libraries may lead to the discovery of next-generation therapeutics that can inhibit intima hyperplasia without impairing re-endothelialization.
SLAS DISCOVERY: Advancing Life Sciences R&D | 2018
Andrew F. Voter; Michael P. Killoran; Gene E. Ananiev; Scott A. Wildman; F. Michael Hoffmann; James L. Keck
Antibiotic-resistant bacterial infections are increasingly prevalent worldwide, and there is an urgent need for novel classes of antibiotics capable of overcoming existing resistance mechanisms. One potential antibiotic target is the bacterial single-stranded DNA binding protein (SSB), which serves as a hub for DNA repair, recombination, and replication. Eight highly conserved residues at the C-terminus of SSB use direct protein–protein interactions (PPIs) to recruit more than a dozen important genome maintenance proteins to single-stranded DNA. Mutations that disrupt PPIs with the C-terminal tail of SSB are lethal, suggesting that small-molecule inhibitors of these critical SSB PPIs could be effective antibacterial agents. As a first step toward implementing this strategy, we have developed orthogonal high-throughput screening assays to identify small-molecule inhibitors of the Klebsiella pneumonia SSB-PriA interaction. Hits were identified from an initial screen of 72,474 compounds using an AlphaScreen (AS) primary screen, and their activity was subsequently confirmed in an orthogonal fluorescence polarization (FP) assay. As an additional control, an FP assay targeted against an unrelated eukaryotic PPI was used to confirm specificity for the SSB-PriA interaction. Nine potent and selective inhibitors produced concentration–response curves with IC50 values of <40 μM, and two compounds were observed to directly bind to PriA, demonstrating the success of this screen strategy.
Organic Letters | 2018
Fan Zhang; Doug R. Braun; Gene E. Ananiev; F. Michael Hoffmann; I-Wei Tsai; Scott R. Rajski; Tim S. Bugni
Screening of a marine natural products library for inhibitors of TGF-β revealed five pyrimidinedione derivatives, biemamides A-E (1-5). The structures were determined by 2D NMR and HRMS experiments; absolute configurations were established by advanced Marfeys analysis and ECD calculations. Biemamides A-E specifically inhibited in vitro TGF-β induced epithelial to mesenchymal transition in NMuMG cells. Additionally, using Caenorhabditis elegans, selected biemmamides were found to influence in vivo developmental processes related to body size regulation in a dose-dependent manner.
Archive | 2006
David C. Schwartz; Gene E. Ananiev
Journal of The American College of Surgeons | 2013
Shakti A. Goel; Lian-Wang Guo; Toshio Takayama; Drew A. Roenneburg; Song Guo; Gene E. Ananiev; F. Michael Hoffmann; K. Craig Kent