Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gene Hart-Smith is active.

Publication


Featured researches published by Gene Hart-Smith.


Proteomics | 2012

The methylproteome and the intracellular methylation network

Melissa A. Erce; Chi N. I. Pang; Gene Hart-Smith; Marc R. Wilkins

Since its discovery more than 50 years ago, post‐translational modification (PTM) of proteins via methylation has grown in prominence, its involvement having been recognised in a number of central processes in the cell. Of these, the best characterised is its role in the epigenetic code. However, there is increasing evidence that its role extends far beyond this and we propose that it is a key regulator in interactome dynamics. In this review, we focus on the role of methylation in regulating protein‐protein interactions and illustrate, by providing a broad‐scale summary of our current knowledge of methylation and its impact on systems biology, how this can ultimately affect interactome dynamics. We describe the variety of analytical techniques available for the study of the methylproteome, comment on their advantages and limitations, and consider how these tools can help elucidate how methylation regulates the dynamics of the interactome. The insights gained from methyltransferase‐substrate networks will be summarised and the ability of protein methylation to facilitate or block protein‐protein interactions as well as their interplay with other post‐translational modifications, in particular phosphorylation, is highlighted. Finally, the importance of methylation in pathology‐associated protein interaction networks will be discussed using examples involving human diseases and the p53 protein.


Nature plants | 2015

Gene regulation by translational inhibition is determined by Dicer partnering proteins

Rodrigo S. Reis; Gene Hart-Smith; Andrew L. Eamens; Marc R. Wilkins; Peter M. Waterhouse

MicroRNAs (miRNAs) are small regulatory RNAs produced by Dicer proteins that regulate gene expression in development and adaptive responses to the environment1–4. In animals, the degree of base pairing between a miRNA and its target messenger RNA seems to determine whether the regulation occurs through cleavage or translation inhibition1. In contrast, the selection of regulatory mechanisms is independent of the degree of mismatch between a plant miRNA and its target transcript5. However, the components and mechanism(s) that determine whether a plant miRNA ultimately regulates its targets by guiding cleavage or translational inhibition are unknown6. Here we show that the form of regulatory action directed by a plant miRNA is determined by DRB2, a DICER-LIKE1 (DCL1) partnering protein. The dependence of DCL1 on DRB1 for miRNA biogenesis is well characterized7–9, but we show that it is only required for miRNA-guided transcript cleavage. We found that DRB2 determines miRNA-guided translational inhibition and represses DRB1 expression, thereby allowing the active selection of miRNA regulatory action. Furthermore, our results reveal that the core silencing proteins ARGONAUTE1 (AGO1) and SERRATE (SE) are highly regulated by miRNA-guided translational inhibition. DRB2 has been remarkably conserved throughout plant evolution, raising the possibility that translational repression is the ancient form of miRNA-directed gene regulation in plants, and that Dicer partnering proteins, such as human TRBP, might play a similar role in other eukaryotic systems.


Journal of Proteome Research | 2013

Analysis of the Proteome of Saccharomyces cerevisiae for Methylarginine

Jason K. K. Low; Gene Hart-Smith; Melissa A. Erce; Marc R. Wilkins

Arginine methylation is a post-translational modification that has been implicated in a plethora of cellular processes. In the present manuscript, using two antimethylarginine antibodies and combinatorial deletion mutants of arginine methyltransferases, we found evidence of widespread arginine methylation in the Saccharomyces cerevisiae proteome. Immunoprecipitation was used for enrichment of methylarginine-containing proteins, which were identified via tandem mass spectrometry. From this, we identified a total of 90 proteins, of which 5 were previously known to be methylated. The proteins identified were involved in known methylarginine-associated biological functions such as RNA processing, nuclear transport, carbohydrate metabolic process, GMP biosynthetic process and protein folding. Through in vivo methylation by the incorporation of [3H]-methyl groups, we validated the methylation of 7 proteins (Ded1, Imd4, Lhp1, Nop1, Cdc11, Gus1, Pob3). By LC-MS/MS, we then confirmed a total of 15 novel methylarginine sites on 5 proteins (Ded1, Lhp1, Nop1, Pab1, and Ugp1). By examination of methylation on proteins from the triple knockout of methyltransferases Hmt1, Hsl7, Rmt2, we present evidence for the existence of additional unidentified arginine methyltransferases in the Saccharomyces cerevisiae proteome.


Molecular & Cellular Proteomics | 2016

Large Scale Mass Spectrometry-based Identifications of Enzyme-mediated Protein Methylation Are Subject to High False Discovery Rates

Gene Hart-Smith; Daniel Yagoub; Aidan P. Tay; Russell Pickford; Marc R. Wilkins

All large scale LC-MS/MS post-translational methylation site discovery experiments require methylpeptide spectrum matches (methyl-PSMs) to be identified at acceptably low false discovery rates (FDRs). To meet estimated methyl-PSM FDRs, methyl-PSM filtering criteria are often determined using the target-decoy approach. The efficacy of this methyl-PSM filtering approach has, however, yet to be thoroughly evaluated. Here, we conduct a systematic analysis of methyl-PSM FDRs across a range of sample preparation workflows (each differing in their exposure to the alcohols methanol and isopropyl alcohol) and mass spectrometric instrument platforms (each employing a different mode of MS/MS dissociation). Through 13CD3-methionine labeling (heavy-methyl SILAC) of Saccharomyces cerevisiae cells and in-depth manual data inspection, accurate lists of true positive methyl-PSMs were determined, allowing methyl-PSM FDRs to be compared with target-decoy approach-derived methyl-PSM FDR estimates. These results show that global FDR estimates produce extremely unreliable methyl-PSM filtering criteria; we demonstrate that this is an unavoidable consequence of the high number of amino acid combinations capable of producing peptide sequences that are isobaric to methylated peptides of a different sequence. Separate methyl-PSM FDR estimates were also found to be unreliable due to prevalent sources of false positive methyl-PSMs that produce high peptide identity score distributions. Incorrect methylation site localizations, peptides containing cysteinyl-S-β-propionamide, and methylated glutamic or aspartic acid residues can partially, but not wholly, account for these false positive methyl-PSMs. Together, these results indicate that the target-decoy approach is an unreliable means of estimating methyl-PSM FDRs and methyl-PSM filtering criteria. We suggest that orthogonal methylpeptide validation (e.g. heavy-methyl SILAC or its offshoots) should be considered a prerequisite for obtaining high confidence methyl-PSMs in large scale LC-MS/MS methylation site discovery experiments and make recommendations on how to reduce methyl-PSM FDRs in samples not amenable to heavy isotope labeling. Data are available via ProteomeXchange with the data identifier PXD002857.


Macromolecular Rapid Communications | 2015

Polymer–Albumin Conjugate for the Facilitated Delivery of Macromolecular Platinum Drugs

Aydan Dag; Yanyan Jiang; Khairil Juhanni Abd Karim; Gene Hart-Smith; Wei Scarano; Martina H. Stenzel

The delivery of macromolecular platinum drugs into cancerous cells is enhanced by conjugating the polymer to albumin. The monomers N-(2-hydroxypropyl)methacrylamide (HPMA) and Boc protected 1,3-diaminopropan-2-yl acrylate (Ac-DAP-Boc) are copolymerized in the presence of a furan protected maleimide functionalized reversible addition-fragmentation chain transfer (RAFT) agent. The resulting polymer with a composition of P(HPMA14 -co-(Ac-DAP-Boc)9 ) and a molecular weight of Mn = 7600 g mol(-1) (Đ = 1.24) is used as a macromolecular ligand for the conjugation to the platinum drug. Thermogravimetric analysis reveals full conjugation. After deprotection of the maleimide functionality of the polymer, the reactive polymer is conjugated to albumin using the Cys34 functionality. The conjugation is monitored using size exclusion chromatography, MALDI-TOF (matrix assisted laser desorption ionization time-of-flight), and SDS Page (sodium dodecyl sulphate polyacrylamide gel electrophoresis). The polymer-albumin conjugates self-assemble in water into nanoparticles of sizes of around 80 nm thanks to the hydrophobic nature of the platinum drugs. The albumin coated nanoparticles are readily taken up by ovarian cancer cell lines and they show superior toxicity compared to a control sample without protein coating.


Journal of Lipid Research | 2015

The terminal enzymes of cholesterol synthesis, DHCR24 and DHCR7, interact physically and functionally

Winnie Luu; Gene Hart-Smith; Laura J. Sharpe; Andrew J. Brown

Cholesterol is essential to human health, and its levels are tightly regulated by a balance of synthesis, uptake, and efflux. Cholesterol synthesis requires the actions of more than twenty enzymes to reach the final product, through two alternate pathways. Here we describe a physical and functional interaction between the two terminal enzymes. 24-Dehydrocholesterol reductase (DHCR24) and 7-dehydrocholesterol reductase (DHCR7) coimmunoprecipitate, and when the DHCR24 gene is knocked down by siRNA, DHCR7 activity is also ablated. Conversely, overexpression of DHCR24 enhances DHCR7 activity, but only when a functional form of DHCR24 is used. DHCR7 is important for both cholesterol and vitamin D synthesis, and we have identified a novel layer of regulation, whereby its activity is controlled by DHCR24. This suggests the existence of a cholesterol “metabolon”, where enzymes from the same metabolic pathway interact with each other to provide a substrate channeling benefit. We predict that other enzymes in cholesterol synthesis may similarly interact, and this should be explored in future studies.


Molecular & Cellular Proteomics | 2013

Interactions affected by arginine methylation in the yeast protein-protein interaction network

Melissa A. Erce; Dhanushi Abeygunawardena; Jason K. K. Low; Gene Hart-Smith; Marc R. Wilkins

Protein–protein interactions can be modulated by the methylation of arginine residues. As a means of testing this, we recently described a conditional two-hybrid system, based on the bacterial adenylate cyclase (BACTH) system. Here, we have used this conditional two-hybrid system to explore the effect of arginine methylation in modulating protein–protein interactions in a subset of the Saccharomyces cerevisiae arginine methylproteome network. Interactions between the yeast hub protein Npl3 and yeast proteins Air2, Ded1, Gbp2, Snp1, and Yra1 were first validated in the absence of methylation. The major yeast arginine methyltransferase Hmt1 was subsequently included in the conditional two-hybrid assay, initially to determine the degree of methylation that occurs. Proteins Snp1 and Yra1 were confirmed as Hmt1 substrates, with five and two novel arginine methylation sites mapped by ETD LC-MS/MS on these proteins, respectively. Proteins Ded1 and Gbp2, previously predicted but not confirmed as substrates of Hmt1, were also found to be methylated with five and seven sites mapped respectively. Air2 was found to be a novel substrate of Hmt1 with two sites mapped. Finally, we investigated the interactions of Npl3 with the five interaction partners in the presence of active Hmt1 and in the presence of Hmt1 with a G68R inactivation mutation. We found that the interaction between Npl3 and Air2, and Npl3 and Ded1, were significantly increased in the presence of active Hmt1; the interaction of Npl3 and Snp1 showed a similar degree of increase in interaction but this was not statistically significant. The interactions of Npl3 and Gbp2, along with Npl3 and Yra1, were not significantly increased or decreased by methylation. We conclude that methylarginine may be a widespread means by which the interactions of proteins are modulated.


Molecular & Cellular Proteomics | 2016

Novel N-terminal and Lysine Methyltransferases That Target Translation Elongation Factor 1A in Yeast and Human

Joshua J. Hamey; Daniel L. Winter; Daniel Yagoub; Christopher M. Overall; Gene Hart-Smith; Marc R. Wilkins

Eukaryotic elongation factor 1A (eEF1A) is an essential, highly methylated protein that facilitates translational elongation by delivering aminoacyl-tRNAs to ribosomes. Here, we report a new eukaryotic protein N-terminal methyltransferase, Saccharomyces cerevisiae YLR285W, which methylates eEF1A at a previously undescribed high-stoichiometry N-terminal site and the adjacent lysine. Deletion of YLR285W resulted in the loss of N-terminal and lysine methylation in vivo, whereas overexpression of YLR285W resulted in an increase of methylation at these sites. This was confirmed by in vitro methylation of eEF1A by recombinant YLR285W. Accordingly, we name YLR285W as elongation factor methyltransferase 7 (Efm7). This enzyme is a new type of eukaryotic N-terminal methyltransferase as, unlike the three other known eukaryotic N-terminal methyltransferases, its substrate does not have an N-terminal [A/P/S]-P-K motif. We show that the N-terminal methylation of eEF1A is also present in human; this conservation over a large evolutionary distance suggests it to be of functional importance. This study also reports that the trimethylation of Lys79 in eEF1A is conserved from yeast to human. The methyltransferase responsible for Lys79 methylation of human eEF1A is shown to be N6AMT2, previously documented as a putative N(6)-adenine-specific DNA methyltransferase. It is the direct ortholog of the recently described yeast Efm5, and we show that Efm5 and N6AMT2 can methylate eEF1A from either species in vitro. We therefore rename N6AMT2 as eEF1A-KMT1. Including the present work, yeast eEF1A is now documented to be methylated by five different methyltransferases, making it one of the few eukaryotic proteins to be extensively methylated by independent enzymes. This implies more extensive regulation of eEF1A by this posttranslational modification than previously appreciated.


Journal of Materials Chemistry B | 2016

Albumin–polymer conjugate nanoparticles and their interactions with prostate cancer cells in 2D and 3D culture: comparison between PMMA and PCL

Yanyan Jiang; Hongxu Lu; Aydan Dag; Gene Hart-Smith; Martina H. Stenzel

Using proteins as the hydrophilic moiety can dramatically improve the biodegradability and biocompatibility of self-assembled amphiphilic nanoparticles in the field of nanomedicine. In this study, we fabricated and evaluated curcumin loaded albumin-polycaprolactone nanoparticles as a novel drug delivery system for prostate carcinoma therapeutics and compared their performance to poly(methyl methacrylate) (PMMA), a non-degradable and amorphous polymer. The maleimide functionalized poly(ε-caprolactone) (PCL) was obtain using ring opening polymerization (ROP) of ε-caprolactone where N-(2-hydroxyethyl)maleimide was used as an initiator. The resorbable albumin-polymer conjugate was prepared by conjugating the hydrophobic maleimide-terminated PCL to the hydrophilic bovine serum albumin (BSA) via a simple Michael addition reaction. PMMA was conjugated in a similar manner. The amphiphilic BSA-polymer conjugates can self-assemble into nanoparticles, displaying well-defined structure, prolonged storage stability, and excellent biocompatibility. The BSA nanoparticles, with encapsulated curcumin, exhibited highly enhanced antitumor activity compared to free curcumin. Furthermore, the high efficacy of the curcumin loaded nanoparticles was verified by effectively inhibiting the growth of three-dimensional LNCaP multicellular tumour spheroids. The cytotoxicity was attributed to the efficient cellular uptake of the nanoparticles through caveolic endocytosis. The direct comparison between PCL and the PMMA revealed that drug loading and release as well as cytotoxicity is not significantly affected by the nature of the polymer. However, it seems that nanoparticles based on PMMA penetrate quicker into LNCaP multicellular tumour spheroids thanks to the increased stability. The faster penetration was found to reduce the toxicity of the nanoparticles as evidenced by the lower number of dead cells. In contrast, the fully degradable PCL-based nanoparticles were more efficient in delivering the drug, thus limiting the growth of LNCaP multicellular tumour spheroids.


Analytica Chimica Acta | 2014

A review of electron-capture and electron-transfer dissociation tandem mass spectrometry in polymer chemistry.

Gene Hart-Smith

Mass spectrometry (MS)-based studies of synthetic polymers often characterise detected polymer components using mass data alone. However when mass-based characterisations are ambiguous, tandem MS (MS/MS) offers a means by which additional analytical information may be collected. This review provides a synopsis of two particularly promising methods of dissociating polymer ions during MS/MS: electron-capture and electron-transfer dissociation (ECD and ETD, respectively). The article opens with a summary of the basic characteristics and operating principles of ECD and ETD, and relates these techniques to other methods of dissociating gas-phase ions, such as collision-induced dissociation (CID). Insights into ECD- and ETD-based MS/MS, gained from studies into proteins and peptides, are then discussed in relation to polymer chemistry. Finally, ECD- and ETD-based studies into various classes of polymer are summarised; for each polymer class, ECD- and ETD-derived data are compared to CID-derived data. These discussions identify ECD and ETD as powerful means by which unique and diagnostically useful polymer ion fragmentation data may be generated, and techniques worthy of increased utilisation by the polymer chemistry community.

Collaboration


Dive into the Gene Hart-Smith's collaboration.

Top Co-Authors

Avatar

Marc R. Wilkins

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Christopher Barner-Kowollik

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Melissa A. Erce

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martina H. Stenzel

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aidan P. Tay

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Daniel Yagoub

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Till Gruendling

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Joshua J. Hamey

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge