Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gene J. Pirelli is active.

Publication


Featured researches published by Gene J. Pirelli.


Journal of Animal Science | 2012

Organic and inorganic selenium: I. Oral bioavailability in ewes 1

Jean A. Hall; R.J. Van Saun; Gerd Bobe; W. C. Stewart; William R. Vorachek; Wayne D. Mosher; T. Nichols; Neil E. Forsberg; Gene J. Pirelli

Although the essentiality of dietary Se for sheep has been known for decades, the chemical source and Se dosage for optimal health remain unclear. In the United States, the Food and Drug Administration (FDA) regulates Se supplementation, regardless of the source of Se, at 0.3 mg of Se/kg of diet (as fed), which is equivalent to 0.7 mg of Se/d or 4.9 mg of Se/wk per sheep. The objectives of this study were to evaluate the effects of Se source (inorganic vs. organic) and supplementation rate (FDA vs. supranutritional rates of 14.7 and 24.5 mg of Se/wk) on whole-blood (WB) and serum-Se concentrations. Mature ewes (n = 240) were randomly assigned to 8 treatment groups (n = 30 each) based on Se supplementation rate (4.9, 14.7, and 24.5 mg of Se•wk(-1)•sheep(-1)) and source [Na-selenite, Na-selenate (4.9 mg/wk only), and organic Se-yeast] with a no-Se control group (0 mg of Se/wk). Treatment groups were balanced for healthy and footrot-affected ewes. For 1 yr, ewes were individually dosed once weekly with 0, 4.9, 14.7, or 24.5 mg of Se, quantities equivalent to their summed daily supplementation rates. Serum- and WB-Se concentrations were measured every 3 mo in all ewes; additionally, WB-Se concentrations were measured once monthly in one-half of the ewes receiving 0 or 4.9 mg of Se/wk. Ewes receiving no Se showed a 78.8 and 58.8% decrease (P < 0.001) in WB- (250 to 53 ng/mL) and serum- (97 to 40 ng/mL) Se concentrations, respectively, over the duration of the study. Whole-blood Se decreased primarily during pregnancy (-57%; 258 to 111 ng/mL) and again during peak lactation (-44%; 109 to 61 ng/mL; P < 0.001). At 4.9 mg of Se/wk, Se-yeast (364 ng/mL, final Se concentration) was more effective than Na-selenite (269 ng/mL) at increasing WB-Se concentrations (P < 0.001). Supranutritional Se-yeast dosages increased WB-Se concentrations in a dose-dependent manner (563 ng/mL, 14.7 mg of Se/wk; 748 ng/mL, 24.5 mg of Se/wk; P < 0.001), whereas WB-Se concentrations were not different for the Na-selenite groups (350 ng/mL, 14.7 mg of Se/wk; 363 ng/mL, 24.5 mg of Se/wk) or the 4.9 mg of Se/wk Se-yeast group (364 ng/mL). In summary, the dose range whereby Se supplementation increased blood Se concentrations was more limited for inorganic Na-selenite than for organic Se-yeast. The smallest rate (FDA-recommended quantity) of organic Se supplementation was equally effective as supranutritional rates of Na-selenite supplementation in increasing WB-Se concentrations, demonstrating the greater oral bioavailability of organic Se.


Journal of Animal Science | 2012

Organic and inorganic selenium: II. Transfer efficiency from ewes to lambs1

W. C. Stewart; Gerd Bobe; William R. Vorachek; Gene J. Pirelli; Wayne D. Mosher; T. Nichols; R.J. Van Saun; Neil E. Forsberg; Jean A. Hall

Adequate Se transfer from ewes to lambs is important to prevent Se-deficiency diseases. To evaluate how different chemical forms of Se administered at comparative dosages to mature ewes affect Se status of their lambs, 240 ewes were divided into 8 treatment groups (n = 30 each) and drenched weekly (at an amount equal to their summed daily intake) with no-Se (controls); at recommended amounts (4.9 mg of Se/wk) with inorganic Na-selenite, inorganic Na-selenate, or organic Se-yeast; or at supranutritional amounts (14.7 and 24.5 mg of Se/wk) with Na-selenite or Se-yeast for 1 yr. Weekly drenching of Se was effective at increasing (P < 0.002) Se concentrations in ewe colostrum and milk at 30 d of lactation and in improving (P < 0.001) the Se status of lambs (whole-blood and serum-Se concentrations at birth, and skeletal-muscle Se concentrations at 14 d of age). Selenium concentrations in lacteal secretions were greater in ewes drenched with Se-yeast (colostrum: 374, 436, and 982 ng/mL at 4.9, 14.7, and 24.5 mg of Se/wk, respectively; milk: 26, 39, 64 ng/mL) compared with ewes drenched with Na-selenite (colostrum: 204, 334, 428 ng/mL; milk: 16, 21, 24 ng/mL), and were also greater (P < 0.001) in their lambs. Selenium concentrations continued to increase (P < 0.001) in lamb whole blood (558 and 695 ng/mL at 14.7 and 24.5 mg of Se/wk, respectively), serum (126, 183 ng/mL), and skeletal muscle (991, 1,696 ng/mL) with supranutritional concentrations of Se-yeast, whereas Se concentrations did not differ in whole blood (304, 332 ng/mL), serum (77, 85 ng/mL), or skeletal muscle (442, 482 ng/mg) of lambs from ewes drenched with 14.7 or 24.5 mg of Se/wk of Na-selenite. We conclude that weekly oral drenching of ewes during gestation and lactation with organic Se-yeast results in a more efficient transfer of Se (over a wide range of supplementation rates) from ewe to lamb than does inorganic Na-selenite.


PLOS ONE | 2013

Effect of Feeding Selenium-Fertilized Alfalfa Hay on Performance of Weaned Beef Calves

Jean A. Hall; Gerd Bobe; Janice K. Hunter; William R. Vorachek; W. C. Stewart; J. Vanegas; Charles T. Estill; Wayne D. Mosher; Gene J. Pirelli

Selenium (Se) is an essential micronutrient in cattle, and Se-deficiency can affect morbidity and mortality. Calves may have greater Se requirements during periods of stress, such as during the transitional period between weaning and movement to a feedlot. Previously, we showed that feeding Se-fertilized forage increases whole-blood (WB) Se concentrations in mature beef cows. Our current objective was to test whether feeding Se-fertilized forage increases WB-Se concentrations and performance in weaned beef calves. Recently weaned beef calves (n = 60) were blocked by body weight, randomly assigned to 4 groups, and fed an alfalfa hay based diet for 7 wk, which was harvested from fields fertilized with sodium-selenate at a rate of 0, 22.5, 45.0, or 89.9 g Se/ha. Blood samples were collected weekly and analyzed for WB-Se concentrations. Body weight and health status of calves were monitored during the 7-wk feeding trial. Increasing application rates of Se fertilizer resulted in increased alfalfa hay Se content for that cutting of alfalfa (0.07, 0.95, 1.55, 3.26 mg Se/kg dry matter for Se application rates of 0, 22.5, 45.0, or 89.9 g Se/ha, respectively). Feeding Se-fertilized alfalfa hay during the 7-wk preconditioning period increased WB-Se concentrations (P Linear<0.001) and body weights (P Linear = 0.002) depending upon the Se-application rate. Based upon our results we suggest that soil-Se fertilization is a potential management tool to improve Se-status and performance in weaned calves in areas with low soil-Se concentrations.


Journal of Animal Science | 2012

Organic and inorganic selenium: III. Ewe and progeny performance

W. C. Stewart; Gerd Bobe; Gene J. Pirelli; Wayne D. Mosher; Jean A. Hall

Selenium is an essential micronutrient in sheep, and deficiency can limit lamb growth and survival. To evaluate how different chemical forms of Se administered to mature ewes at comparative dosages affect ewe and progeny performance, 240 ewes were divided into 8 treatment groups (n = 30 each) and drenched weekly with no Se; at the maximum FDA-allowed concentration with inorganic Na-selenite or organic Se-yeast (4.9 mg Se/wk); with inorganic Na-selenate (8.95 mg Se/wk); or with inorganic Na-selenite and organic Se-yeast at supranutritional concentrations (14.7 and 24.5 mg Se/wk, respectively). The treatment period started approximately 2 wk before breeding and lasted for 62.5 wk. Ewes of the no-Se and Se-yeast groups continued treatments for another 21 to 24 wk through a second lambing season. Chemical form or dosage of Se did not affect ewe reproductive performance based on proportion of ewes lambing in each treatment group, or number of lambs born, nursed, or weaned per ewe (all P > 0.10). Ewes receiving the highest supplementation rate of Se-yeast at 24.5 mg Se/wk had higher BCS (scale 1 to 5) at the end of yr 1 (2.95 vs. 2.66; P = 0.05) than ewes receiving Se-yeast at 4.9 mg Se/wk. Performance was better in lambs from ewes receiving Se-yeast at 24.5 mg Se/wk than in lambs from ewes receiving Se-yeast at 4.9 mg Se/wk or no Se. In yr 1, lambs from ewes receiving Se-yeast at 24.5 vs. 4.9 mg Se/wk were heavier at 120 d of age (37.0 vs. 34.2 kg; P = 0.05). In yr 2, lambs from ewes receiving Se-yeast at 24.5 mg Se/wk were or tended to be heavier at 60 d of age than lambs from ewes receiving no Se (21.2 vs. 19.0 kg; P = 0.04) or lambs from ewes receiving Se-yeast at 4.9 mg Se/wk (19.2 kg; P = 0.09). This effect was more pronounced in ewes raising multiple lambs. We conclude that supranutritional supplementation of ewes with Se-yeast at 24.5 mg Se/wk improves lamb growth and ewe health without negatively affecting reproductive performance.


PLOS ONE | 2013

Selenium Supplementation Restores Innate and Humoral Immune Responses in Footrot-Affected Sheep

Jean A. Hall; William R. Vorachek; W. C. Stewart; M. Elena Gorman; Wayne D. Mosher; Gene J. Pirelli; Gerd Bobe

Dietary selenium (Se) alters whole-blood Se concentrations in sheep, dependent upon Se source and dosage administered, but little is known about effects on immune function. We used footrot (FR) as a disease model to test the effects of supranutritional Se supplementation on immune function. To determine the effect of Se-source (organic Se-yeast, inorganic Na-selenite or Na-selenate) and Se-dosage (1, 3, 5 times FDA-permitted level) on FR severity, 120 ewes with and 120 ewes without FR were drenched weekly for 62 weeks with different Se sources and dosages (30 ewes/treatment group). Innate immunity was evaluated after 62 weeks of supplementation by measuring neutrophil bacterial killing ability. Adaptive immune function was evaluated by immunizing sheep with keyhole limpet hemocyanin (KLH). The antibody titer and delayed-type hypersensitivity skin test to KLH were used to assess humoral immunity and cell-mediated immunity, respectively. At baseline, FR-affected ewes had lower whole-blood and serum-Se concentrations; this difference was not observed after Se supplementation. Se supplementation increased neutrophil bacterial killing percentages in FR-affected sheep to percentages observed in supplemented and non-supplemented healthy sheep. Similarly, Se supplementation increased KLH antibody titers in FR-affected sheep to titers observed in healthy sheep. FR-affected sheep demonstrated suppressed cell-mediated immunity at 24 hours after intradermal KLH challenge, although there was no improvement with Se supplementation. We did not consistently prevent nor improve recovery from FR over the 62 week Se-treatment period. In conclusion, Se supplementation does not prevent FR, but does restore innate and humoral immune functions negatively affected by FR.


Journal of Animal Science | 2013

Organic and inorganic selenium: IV. Passive transfer of immunoglobulin from ewe to lamb

W. C. Stewart; Gerd Bobe; William R. Vorachek; Bernadette V. Stang; Gene J. Pirelli; Wayne D. Mosher; Jean A. Hall

Newborn lambs depend on their dams for passive transfer of immunoglobulins, primarily IgG, for protection from harmful pathogens until their own immunological defenses have developed. Previous studies have suggested that supplementation with Se results in a modest increase in IgG concentration in serum of newborn calves and lambs. To evaluate the effect of the Se source and supplementation rate in ewes during pregnancy on passive transfer of IgG to their lambs, 210 Polypay, Suffolk, or Suffolk × Polypay cross ewes were divided into 7 treatment groups (n = 30 each) and drenched weekly with no Se, at the maximum FDA-allowed concentration with inorganic Na-selenite or organic Se-yeast (4.9 mg Se/wk), or with inorganic Na-selenite and organic Se-yeast at supranutritional concentrations (14.7 and 24.5 mg Se/wk). Ewe serum IgG concentrations were measured within 30 d of parturition, ewe colostrum and lamb serum IgG concentrations were measured at parturition before suckling, and lamb serum IgG concentrations were measured again at 48 h postnatal. Ewes receiving 24.5 mg Se/wk tended to have or had, independent of Se source, greater colostral IgG concentrations than ewes receiving 4.9 mg Se/wk overall (81.3 vs. 66.2 mg/mL; P = 0.08) and for Polypay ewes only (90.1 vs. 60.7 mg/mL; P = 0.03). Polypay ewes receiving Se-yeast at 24.5 mg Se/wk transferred a greater calculated total IgG amount to their lambs than Polypay ewes receiving Se-yeast at 4.9 mg Se/wk (15.5 vs. 11.6 g; P = 0.02), whereas the converse was true (interaction between Se source and dose concentration; P = 0.03) for Polypay ewes receiving inorganic Na-selenite at 24.5 mg Se/wk vs. Na-selenite at 4.9 mg/wk (11.6 vs. 15.7 g; P = 0.08). Our results suggest that supranutritional Se supplementation of Polypay ewes during pregnancy increases colostral IgG concentrations but that the optimal supplementation rate for IgG transfer from ewe to lamb may differ for Na-selenite and Se-yeast.


Journal of Dairy Science | 2014

Effect of supranutritional maternal and colostral selenium supplementation on passive absorption of immunoglobulin G in selenium-replete dairy calves

Jean A. Hall; Gerd Bobe; William R. Vorachek; Charles T. Estill; Wayne D. Mosher; Gene J. Pirelli; Mike Gamroth

Selenium (Se) is an essential micronutrient for ruminant animals affecting both performance and immune functions. Adding 3 mg of Se/L (in the form of Na selenite) to colostrum has been shown to improve IgG absorption in Se-deficient newborn dairy calves. The objective of our study was to determine the effect of supranutritional maternal and colostral Se supplementation on IgG status of Se-replete dairy calves. The study design was a 2 × 2 × 2 factorial design. During the last 8 wk before calving, dairy cows at a commercial dairy were fed either 0 (control cows) or 105 mg of Se-yeast once weekly (supranutritional Se-yeast-supplemented cows), in addition to Na selenite at 0.3 mg of Se/kg of DM in their ration. After birth, calves were fed pooled colostrum from control or supranutritional Se-yeast-supplemented cows to which 0 or 3 mg of Se/L (in the form of Na selenite) was added. Concentrations of whole-blood (WB) Se and serum Se measured at birth and at 48 h and 14 d of age, and serum IgG concentrations measured at 48 h and 14 and 60 d of age were determined. Calves born to Se-yeast-supplemented cows had higher WB-Se and serum-Se concentrations for the first 2 wk, and higher IgG absorption efficiency (62% at 48 h), resulting in higher serum-IgG concentrations (43% at 48 h and 65% at 14 d) and higher total serum-IgG content (50% at 48 h and 75% at 14 d), compared with calves born to control cows. Calves that received colostrum with added Na selenite had higher WB-Se concentrations for the first 2 wk, but only at 14 d of age were serum-Se concentrations, serum-IgG concentrations (53% higher), and total serum-IgG content (56% higher) higher, compared with calves that were fed colostrum without added Na selenite. Calves born to Se-yeast-supplemented cows that received colostrum from Se-yeast cows without added Na selenite had a higher IgG absorption efficiency compared with all other treatment groups. Our results support that feeding cows supranutritional Se-yeast supplement during the dry period or spiking colostrum with Na selenite both improve IgG status of Se-replete calves.


The Professional Animal Scientist | 2007

Selenium Fertilization of Pastures for Improved Forage Selenium Content

S.J. Filley; A. Peters; C. Bouska; Gene J. Pirelli; J.E. Oldfield

Selenium (Se) was applied to perennial ryegrass (Lolium perenne) and subterranean clover (Trifolium subterranean) pasture as a fertilizer to determine the effect of Se form and concentration on Se accumulation in subsequent forage growth. Treatments were a no Se control, 0.6 kg/ ha Se as sodium selenate, and 0.6, 1.1, and 2.2 kg/ha Se as sodium selenite, all applied to pasture plots with low soil Se concentration in southwestern Oregon (n = 3 plots per treatment). The plots were protected from grazing by use of electric fence, and total forage DM production and Se concentrations were measured after the spring growing season in yr 1. Pastures were grazed by sheep over the fall growing season, but then were protected from spring grazing to enable sampling of residual forage Se concentrations during yr 2. Application of 0.6 kg/ ha selenate provided greater (P < 0.01) average forage Se content in yr 1 (8.44 ± 0.08 mg/kg) than all other treatments. Compared with the control (0.09 ± 0.06 mg/kg), the plots in the 0.6 and 2.2 kg/ ha selenite treatments contained greater


Journal of Animal Science | 2014

Effect of transport on blood selenium and glutathione status in feeder lambs.

Jean A. Hall; Gerd Bobe; B. K. Nixon; William R. Vorachek; Hugejiletu; T. Nichols; Wayne D. Mosher; Gene J. Pirelli

Stress from transport may be linked to increased generation of reactive oxygen species, the removal of which requires reduced glutathione and selenium. The aim of this experiment was to examine the effect of transport on glutathione and Se status of feeder lambs. Recently weaned lambs (n = 40) were blocked by gender and BW on d 0 of the experiment and randomly assigned to 2 treatment groups: group 1, no transport and full access to feed and water (control), and group 2, 8-h road transport followed by another 16 h of feed deprivation (transport). After 24 h, both treatment groups were treated the same. All lambs were weighed, and blood samples were collected at 0, 8, 24, and 72 h and analyzed for whole-blood (WB) and serum Se concentrations, serum NEFA concentrations, and erythrocyte concentrations of glutathione. Transport of feeder lambs for 8 h followed by another 16 h of feed deprivation transiently (significant at 24 h but no longer different at 72 h) decreased BW and erythrocyte glutathione concentrations and increased serum NEFA and blood Se concentrations compared with control lambs. Our results suggest that 8 h of transport followed by another 16 h of feed deprivation results in fatty acid and Se mobilization from tissue stores with a coincident decrease in erythrocyte glutathione concentrations.


PLOS ONE | 2017

Weaned beef calves fed selenium-biofortified alfalfa hay have an enriched nasal microbiota compared with healthy controls

Jean A. Hall; Anitha Isaiah; Charles T. Estill; Gene J. Pirelli; Jan S. Suchodolski

Selenium (Se) is an essential trace mineral important for immune function and overall health of cattle. The nasopharyngeal microbiota in cattle plays an important role in overall respiratory health, especially when stresses associated with weaning, transport, and adaptation to a feedlot affect the normal respiratory defenses. Recent evidence suggests that cattle diagnosed with bovine respiratory disease complex have significantly less bacterial diversity. The objective of this study was to determine whether feeding weaned beef calves Se-enriched alfalfa (Medicago sativa) hay for 9 weeks in a preconditioning program prior to entering the feedlot alters nasal microbiota. Recently weaned beef calves (n = 45) were blocked by sex and body weight, randomly assigned to 3 treatment groups with 3 pens of 5 calves per treatment group, and fed an alfalfa hay based diet for 9 weeks. Alfalfa hay was harvested from fields fertilized with sodium selenate at a rate of 0, 45.0 or 89.9 g Se/ha. Blood samples were collected biweekly and analyzed for whole-blood Se concentrations. Nasal swabs were collected during week 9 from one or two calves from each pen (total n = 16). Calculated Se intake from dietary sources was 3.0, 15.6, and 32.2 mg Se/head/day for calves consuming alfalfa hay with Se concentrations of 0.34 to 2.42 and 5.17 mg Se/kg dry matter, respectively. Whole-blood Se concentrations after 8 weeks of feeding Se-fertilized alfalfa hay were dependent upon Se-application rates (0, 45.0, or 89.9 g Se/ha) and were 155, 345, and 504 ng/mL (PLinear < 0.0001). Microbial DNA was extracted from nasal swabs and amplified and sequenced. Alpha rarefaction curves comparing the species richness (observed OTUs) and overall diversity (Chao1, Observed OTU, and Shannon index) between calves fed selenium-biofortified alfalfa hay compared with control calves showed that Se-supplementation tended to be associated with an enriched nasal microbiota. ANOSIM of unweighted UniFrac distances showed that calves fed high Se-biofortified alfalfa hay clustered separately when compared with control calves in the PCoA plot (R = 0.216, P = 0.04). The bacterial orders Lactobacillales and Flavobacteriales were increased in healthy control calves compared with Clostridiales and Bacteroidales being increased in calves fed Se-biofortified alfalfa hay. Although there were strong trends, no significant differences were noted for any of the bacterial taxa. Based upon these findings, we suggest that weaned beef calves fed Se-biofortified hay tend to have an enriched nasal microbiota. Feeding Se-biofortified alfalfa hay to weaned beef calves prior to entering the feedlot is a strategy for increasing nasopharyngeal microbial diversity.

Collaboration


Dive into the Gene J. Pirelli's collaboration.

Top Co-Authors

Avatar

Jean A. Hall

Oregon State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerd Bobe

Oregon State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R.J. Van Saun

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

T. Nichols

Oregon State University

View shared research outputs
Top Co-Authors

Avatar

A.M. Harwell

Oregon State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge