Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gene-Jack Wang is active.

Publication


Featured researches published by Gene-Jack Wang.


The Lancet | 2001

Brain dopamine and obesity

Gene-Jack Wang; Nora D. Volkow; Jean Logan; Naoml R Pappas; Christopher Wong; Wel Zhu; Noelwah Netusll; Joanna S. Fowler

BACKGROUND The cerebral mechanisms underlying the behaviours that lead to pathological overeating and obesity are poorly understood. Dopamine, a neurotransmitter that modulates rewarding properties of food, is likely to be involved. To test the hypothesis that obese individuals have abnormalities in brain dopamine activity we measured the availability of dopamine D2 receptors in brain. METHODS Brain dopamine D2 receptor availability was measured with positron emission tomography (PET) and [C-11]raclopride (a radioligand for the dopamine D2 receptor). Bmax/Kd (ratio of the distribution volumes in striatum to that in cerebellum minus 1) was used as a measure of dopamine D2 receptor availability. Brain glucose metabolism was also assessed with 2-deoxy-2[18F]fluoro-D-glucose (FDG). FINDINGS Striatal dopamine D2 receptor availability was significantly lower in the ten obese individuals (2.47 [SD 0.36]) than in controls (2.99 [0.41]; p < or = 0.0075). In the obese individuals body mass index (BMI) correlated negatively with the measures of D2 receptors (r=0.84; p < or = 0.002); the individuals with the lowest D2 values had the largest BMI. By contrast, neither whole brain nor striatal metabolism differed between obese individuals and controls, indicating that striatal reductions in D2 receptors were not due to a systematic reduction in radiotracer delivery. INTERPRETATION The availability of dopamine D2 receptor was decreased in obese individuals in proportion to their BMI. Dopamine modulates motivation and reward circuits and hence dopamine deficiency in obese individuals may perpetuate pathological eating as a means to compensate for decreased activation of these circuits. Strategies aimed at improving dopamine function may be beneficial in the treatment of obese individuals.


The Journal of Neuroscience | 2006

Cocaine Cues and Dopamine in Dorsal Striatum: Mechanism of Craving in Cocaine Addiction

Nora D. Volkow; Gene-Jack Wang; Frank Telang; Joanna S. Fowler; Jean Logan; Anna-Rose Childress; Millard Jayne; Yeming Ma; Christopher Wong

The ability of drugs of abuse to increase dopamine in nucleus accumbens underlies their reinforcing effects. However, preclinical studies have shown that with repeated drug exposure neutral stimuli paired with the drug (conditioned stimuli) start to increase dopamine by themselves, which is an effect that could underlie drug-seeking behavior. Here we test whether dopamine increases occur to conditioned stimuli in human subjects addicted to cocaine and whether this is associated with drug craving. We tested eighteen cocaine-addicted subjects using positron emission tomography and [11C]raclopride (dopamine D2 receptor radioligand sensitive to competition with endogenous dopamine). We measured changes in dopamine by comparing the specific binding of [11C]raclopride when subjects watched a neutral video (nature scenes) versus when they watched a cocaine-cue video (scenes of subjects smoking cocaine). The specific binding of [11C]raclopride in dorsal (caudate and putamen) but not in ventral striatum (in which nucleus accumbens is located) was significantly reduced in the cocaine-cue condition and the magnitude of this reduction correlated with self-reports of craving. Moreover, subjects with the highest scores on measures of withdrawal symptoms and of addiction severity that have been shown to predict treatment outcomes, had the largest dopamine changes in dorsal striatum. This provides evidence that dopamine in the dorsal striatum (region implicated in habit learning and in action initiation) is involved with craving and is a fundamental component of addiction. Because craving is a key contributor to relapse, strategies aimed at inhibiting dopamine increases from conditioned responses are likely to be therapeutically beneficial in cocaine addiction.


Journal of Clinical Investigation | 2003

The addicted human brain: insights from imaging studies

Nora D. Volkow; Joanna S. Fowler; Gene-Jack Wang

Imaging studies have revealed neurochemical and functional changes in the brains of drug-addicted subjects that provide new insights into the mechanisms underlying addiction. Neurochemical studies have shown that large and fast increases in dopamine are associated with the reinforcing effects of drugs of abuse, but also that after chronic drug abuse and during withdrawal, brain dopamine function is markedly decreased and these decreases are associated with dysfunction of prefrontal regions (including orbitofrontal cortex and cingulate gyrus). The changes in brain dopamine function are likely to result in decreased sensitivity to natural reinforcers since dopamine also mediates the reinforcing effects of natural reinforcers and on disruption of frontal cortical functions, such as inhibitory control and salience attribution. Functional imaging studies have shown that during drug intoxication, or during craving, these frontal regions become activated as part of a complex pattern that includes brain circuits involved with reward (nucleus accumbens), motivation (orbitofrontal cortex), memory (amygdala and hippocampus), and cognitive control (prefrontal cortex and cingulate gyrus). Here, we integrate these findings and propose a model that attempts to explain the loss of control and compulsive drug intake that characterize addiction. Specifically, we propose that in drug addiction the value of the drug and drug-related stimuli is enhanced at the expense of other reinforcers. This is a consequence of conditioned learning and of the resetting of reward thresholds as an adaptation to the high levels of stimulation induced by drugs of abuse. In this model, during exposure to the drug or drug-related cues, the memory of the expected reward results in overactivation of the reward and motivation circuits while decreasing the activity in the cognitive control circuit. This contributes to an inability to inhibit the drive to seek and consume the drug and results in compulsive drug intake. This model has implications for therapy, for it suggests a multi-prong approach that targets strategies to decrease the rewarding properties of drugs, to enhance the rewarding properties of alternative reinforcers, to interfere with conditioned-learned associations, and to strengthen cognitive control in the treatment of drug addiction.


Trends in Cognitive Sciences | 2011

Reward, dopamine and the control of food intake: implications for obesity

Nora D. Volkow; Gene-Jack Wang; Ruben Baler

The ability to resist the urge to eat requires the proper functioning of neuronal circuits involved in top-down control to oppose the conditioned responses that predict reward from eating the food and the desire to eat the food. Imaging studies show that obese subjects might have impairments in dopaminergic pathways that regulate neuronal systems associated with reward sensitivity, conditioning and control. It is known that the neuropeptides that regulate energy balance (homeostatic processes) through the hypothalamus also modulate the activity of dopamine cells and their projections into regions involved in the rewarding processes underlying food intake. It is postulated that this could also be a mechanism by which overeating and the resultant resistance to homoeostatic signals impairs the function of circuits involved in reward sensitivity, conditioning and cognitive control.


Philosophical Transactions of the Royal Society B | 2008

Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology.

Nora D. Volkow; Gene-Jack Wang; Joanna S. Fowler; Frank Telang

Drugs and food exert their reinforcing effects in part by increasing dopamine (DA) in limbic regions, which has generated interest in understanding how drug abuse/addiction relates to obesity. Here, we integrate findings from positron emission tomography imaging studies on DAs role in drug abuse/addiction and in obesity and propose a common model for these two conditions. Both in abuse/addiction and in obesity, there is an enhanced value of one type of reinforcer (drugs and food, respectively) at the expense of other reinforcers, which is a consequence of conditioned learning and resetting of reward thresholds secondary to repeated stimulation by drugs (abuse/addiction) and by large quantities of palatable food (obesity) in vulnerable individuals (i.e. genetic factors). In this model, during exposure to the reinforcer or to conditioned cues, the expected reward (processed by memory circuits) overactivates the reward and motivation circuits while inhibiting the cognitive control circuit, resulting in an inability to inhibit the drive to consume the drug or food despite attempts to do so. These neuronal circuits, which are modulated by DA, interact with one another so that disruption in one circuit can be buffered by another, which highlights the need of multiprong approaches in the treatment of addiction and obesity.


The Journal of Neuroscience | 2001

Loss of Dopamine Transporters in Methamphetamine Abusers Recovers with Protracted Abstinence

Nora D. Volkow; Linda Chang; Gene-Jack Wang; Joanna S. Fowler; Dinko Franceschi; Mark J. Sedler; Samuel J. Gatley; Eric N. Miller; Robert Hitzemann; Yu-Shin Ding; Jean Logan

Methamphetamine is a popular drug of abuse that is neurotoxic to dopamine (DA) terminals when administered to laboratory animals. Studies in methamphetamine abusers have also documented significant loss of DA transporters (used as markers of the DA terminal) that are associated with slower motor function and decreased memory. The extent to which the loss of DA transporters predisposes methamphetamine abusers to neurodegenerative disorders such as Parkinsonism is unclear and may depend in part on the degree of recovery. Here we assessed the effects of protracted abstinence on the loss of DA transporters in striatum, in methamphetamine abusers using positron emission tomography and [11C]d-threo-methylphenidate (DA transporter radioligand). Brain DA transporters in five methamphetamine abusers evaluated during short abstinence (<6 months) and then retested during protracted abstinence (12–17 months) showed significant increases with protracted abstinence (caudate, +19%; putamen, +16%). Although performance in some of the tests for which we observed an association with DA transporters showed some improvement, this effect was not significant. The DA transporter increases with abstinence could indicate that methamphetamine-induced DA transporter loss reflects temporary adaptive changes (i.e., downregulation), that the loss reflects DA terminal damage but that terminals can recover, or that remaining viable terminals increase synaptic arborization. Because neuropsychological tests did not improve to the same extent, this suggests that the increase of the DA transporters was not sufficient for complete function recovery. These findings have treatment implications because they suggest that protracted abstinence may reverse some of methamphetamine-induced alterations in brain DA terminals.


Neuropharmacology | 2004

The addicted human brain viewed in the light of imaging studies: brain circuits and treatment strategies

Nora D. Volkow; Joanna S. Fowler; Gene-Jack Wang

Imaging studies have provided evidence of how the human brain changes as an individual becomes addicted. Here, we integrate the findings from imaging studies to propose a model of drug addiction. The process of addiction is initiated in part by the fast and high increases in DA induced by drugs of abuse. We hypothesize that this supraphysiological effect of drugs trigger a series of adaptations in neuronal circuits involved in saliency/reward, motivation/drive, memory/conditioning, and control/disinhibition, resulting in an enhanced (and long lasting) saliency value for the drug and its associated cues at the expense of decreased sensitivity for salient events of everyday life (including natural reinforcers). Although acute drug intake increases DA neurotransmission, chronic drug consumption results in a marked decrease in DA activity, associated with, among others, dysregulation of the orbitofrontal cortex (region involved with salience attribution) and cingulate gyrus (region involved with inhibitory control). The ensuing increase in motivational drive for the drug, strengthened by conditioned responses and the decrease in inhibitory control favors emergence of compulsive drug taking. This view of how drugs of abuse affect the brain suggests strategies for intervention, which might include: (a) those that will decrease the reward value of the drug of choice; (b) interventions to increase the saliency value of non-drug reinforcers; (c) approaches to weaken conditioned drug behaviors; and (d) methods to strengthen frontal inhibitory and executive control. Though this model focuses mostly on findings from PET studies of the brain DA system it is evident that other neurotransmitters are involved and that a better understanding of their roles in addiction would expand the options for therapeutic targets.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Addiction: Beyond dopamine reward circuitry

Nora D. Volkow; Gene-Jack Wang; Joanna S. Fowler; Dardo Tomasi; Frank Telang

Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction is much less clear. This review focuses on studies that used PET to characterize the brain DA system in addicted subjects. These studies have corroborated in humans the relevance of drug-induced fast DA increases in striatum [including nucleus accumbens (NAc)] in their rewarding effects but have unexpectedly shown that in addicted subjects, drug-induced DA increases (as well as their subjective reinforcing effects) are markedly blunted compared with controls. In contrast, addicted subjects show significant DA increases in striatum in response to drug-conditioned cues that are associated with self-reports of drug craving and appear to be of a greater magnitude than the DA responses to the drug. We postulate that the discrepancy between the expectation for the drug effects (conditioned responses) and the blunted pharmacological effects maintains drug taking in an attempt to achieve the expected reward. Also, whether tested during early or protracted withdrawal, addicted subjects show lower levels of D2 receptors in striatum (including NAc), which are associated with decreases in baseline activity in frontal brain regions implicated in salience attribution (orbitofrontal cortex) and inhibitory control (anterior cingulate gyrus), whose disruption results in compulsivity and impulsivity. These results point to an imbalance between dopaminergic circuits that underlie reward and conditioning and those that underlie executive function (emotional control and decision making), which we postulate contributes to the compulsive drug use and loss of control in addiction.


Neurobiology of Learning and Memory | 2002

Role of Dopamine, the Frontal Cortex and Memory Circuits in Drug Addiction: Insight from Imaging Studies

Nora D. Volkow; Joanna S. Fowler; Gene-Jack Wang; Rita Z. Goldstein

Drug addiction is characterized by a set of recurring processes (intoxication, withdrawal, craving) that lead to the relapsing nature of the disorder. We have used positron emission tomography to investigate in humans the role of dopamine (DA) and the brain circuits it regulates in these processes. We have shown that increases in DA are associated with the subjective reports of drug reinforcement corroborating the relevance of drug-induced DA increases in the rewarding effects of drugs in humans. During withdrawal we have shown in drug abusers significant reductions in DA D2 receptors and in DA release. We postulate that this hypodopaminergic state would result in a decreased sensitivity to natural reinforcers perpetuating the use of the drug as a means to compensate for this deficit and contributing to the anhedonia and dysphoria seen during withdrawal. Because the D2 reductions are associated with decreased activity in the anterior cingulate gyrus and in the orbitofrontal cortex we postulate that this is one of the mechanisms by which DA disruption leads to compulsive drug administration and the lack of control over drug intake in the drug-addicted individual. This is supported by studies showing that during craving these frontal regions become hyperactive in proportion to the intensity of the craving. Craving is also associated with activation of memory circuits including the amygdala (implicated in conditioned learning), hippocampus (implicated in declarative learning), and dorsal striatum (implicated in habit learning) all of which receive DA innervation. We therefore postulate that dopamine contributes to addiction by disrupting the frontal cortical circuits that regulate motivation, drive, and self-control and by memory circuits that increase the motivational salience of the drug and drug-associated stimuli.


JAMA | 2009

Evaluating Dopamine Reward Pathway in ADHD: Clinical Implications

Nora D. Volkow; Gene-Jack Wang; Scott H. Kollins; Tim Wigal; Jeffrey H. Newcorn; Frank Telang; Joanna S. Fowler; Wei Zhu; Jean Logan; Yeming Ma; Kith Pradhan; Christopher Wong; James M. Swanson

CONTEXT Attention-deficit/hyperactivity disorder (ADHD)--characterized by symptoms of inattention and hyperactivity-impulsivity--is the most prevalent childhood psychiatric disorder that frequently persists into adulthood, and there is increasing evidence of reward-motivation deficits in this disorder. OBJECTIVE To evaluate biological bases that might underlie a reward/motivation deficit by imaging key components of the brain dopamine reward pathway (mesoaccumbens). DESIGN, SETTING, AND PARTICIPANTS We used positron emission tomography to measure dopamine synaptic markers (transporters and D(2)/D(3) receptors) in 53 nonmedicated adults with ADHD and 44 healthy controls between 2001-2009 at Brookhaven National Laboratory. MAIN OUTCOME MEASURES We measured specific binding of positron emission tomographic radioligands for dopamine transporters (DAT) using [(11)C]cocaine and for D(2)/D(3) receptors using [(11)C]raclopride, quantified as binding potential (distribution volume ratio -1). RESULTS For both ligands, statistical parametric mapping showed that specific binding was lower in ADHD than in controls (threshold for significance set at P < .005) in regions of the dopamine reward pathway in the left side of the brain. Region-of-interest analyses corroborated these findings. The mean (95% confidence interval [CI] of mean difference) for DAT in the nucleus accumbens for controls was 0.71 vs 0.63 for those with ADHD (95% CI, 0.03-0.13, P = .004) and in the midbrain for controls was 0.16 vs 0.09 for those with ADHD (95% CI, 0.03-0.12; P < or = .001); for D(2)/D(3) receptors, the mean accumbens for controls was 2.85 vs 2.68 for those with ADHD (95% CI, 0.06-0.30, P = .004); and in the midbrain, it was for controls 0.28 vs 0.18 for those with ADHD (95% CI, 0.02-0.17, P = .01). The analysis also corroborated differences in the left caudate: the mean DAT for controls was 0.66 vs 0.53 for those with ADHD (95% CI, 0.04-0.22; P = .003) and the mean D(2)/D(3) for controls was 2.80 vs 2.47 for those with ADHD (95% CI, 0.10-0.56; P = .005) and differences in D(2)/D(3) in the hypothalamic region, with controls having a mean of 0.12 vs 0.05 for those with ADHD (95% CI, 0.02-0.12; P = .004). Ratings of attention correlated with D(2)/D(3) in the accumbens (r = 0.35; 95% CI, 0.15-0.52; P = .001), midbrain (r = 0.35; 95% CI, 0.14-0.52; P = .001), caudate (r = 0.32; 95% CI, 0.11-0.50; P = .003), and hypothalamic (r = 0.31; CI, 0.10-0.49; P = .003) regions and with DAT in the midbrain (r = 0.37; 95% CI, 0.16-0.53; P < or = .001). CONCLUSION A reduction in dopamine synaptic markers associated with symptoms of inattention was shown in the dopamine reward pathway of participants with ADHD.

Collaboration


Dive into the Gene-Jack Wang's collaboration.

Top Co-Authors

Avatar

Nora D. Volkow

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Joanna S. Fowler

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Telang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Christopher Wong

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Dardo Tomasi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rita Z. Goldstein

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Millard Jayne

Brookhaven National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge