Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geneviève Conejero is active.

Publication


Featured researches published by Geneviève Conejero.


The EMBO Journal | 2003

Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance

Pierre Berthomieu; Geneviève Conejero; Aurélie Nublat; William J. Brackenbury; Cécile Lambert; Cristina Savio; Nobuyuki Uozumi; Shigetoshi Oiki; Katsuyuki Yamada; Françoise Cellier; Françoise Gosti; Thierry Simonneau; Pauline A. Essah; Mark Tester; Anne-Aliénor Véry; Hervé Sentenac; Francine Casse

Two allelic recessive mutations of Arabidopsis, sas2‐1 and sas2‐2, were identified as inducing sodium overaccumulation in shoots. The sas2 locus was found (by positional cloning) to correspond to the AtHKT1 gene. Expression in Xenopus oocytes revealed that the sas2‐1 mutation did not affect the ionic selectivity of the transporter but strongly reduced the macro scopic (whole oocyte current) transport activity. In Arabidopsis, expression of AtHKT1 was shown to be restricted to the phloem tissues in all organs. The sas2‐1 mutation strongly decreased Na+ concentration in the phloem sap. It led to Na+ overaccumulation in every aerial organ (except the stem), but to Na+ underaccumulation in roots. The sas2 plants displayed increased sensitivity to NaCl, with reduced growth and even death under moderate salinity. The whole set of data indicates that AtHKT1 is involved in Na+ recirculation from shoots to roots, probably by mediating Na+ loading into the phloem sap in shoots and unloading in roots, this recirculation removing large amounts of Na+ from the shoot and playing a crucial role in plant tolerance to salt.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Monoubiquitin-dependent endocytosis of the IRON-REGULATED TRANSPORTER 1 (IRT1) transporter controls iron uptake in plants

Marie Barberon; Eenric Zelazny; Stéphanie Robert; Geneviève Conejero; Cathy Curie; Jiri Friml; Grégory Vert

Plants take up iron from the soil using the IRON-REGULATED TRANSPORTER 1 (IRT1) high-affinity iron transporter at the root surface. Sophisticated regulatory mechanisms allow plants to tightly control the levels of IRT1, ensuring optimal absorption of essential but toxic iron. Here, we demonstrate that overexpression of Arabidopsis thaliana IRT1 leads to constitutive IRT1 protein accumulation, metal overload, and oxidative stress. IRT1 is unexpectedly found in trans-Golgi network/early endosomes of root hair cells, and its levels and localization are unaffected by iron nutrition. Using pharmacological approaches, we show that IRT1 cycles to the plasma membrane to perform iron and metal uptake at the cell surface and is sent to the vacuole for proper turnover. We also prove that IRT1 is monoubiquitinated on several cytosol-exposed residues in vivo and that mutation of two putative monoubiquitination target residues in IRT1 triggers stabilization at the plasma membrane and leads to extreme lethality. Together, these data suggest a model in which monoubiquitin-dependent internalization/sorting and turnover keep the plasma membrane pool of IRT1 low to ensure proper iron uptake and to prevent metal toxicity. More generally, our work demonstrates the existence of monoubiquitin-dependent trafficking to lytic vacuoles in plants and points to proteasome-independent turnover of plasma membrane proteins.


Plant Physiology | 2009

Diversity in expression patterns and functional properties in the rice HKT transporter family.

Mehdi Jabnoune; Sandra Espeout; Delphine Mieulet; Jean-Luc Verdeil; Geneviève Conejero; Alonso Rodríguez-Navarro; Hervé Sentenac; Emmanuel Guiderdoni; Chedly Abdelly; Anne-Aliénor Véry

Plant growth under low K+ availability or salt stress requires tight control of K+ and Na+ uptake, long-distance transport, and accumulation. The family of membrane transporters named HKT (for High-Affinity K+ Transporters), permeable either to K+ and Na+ or to Na+ only, is thought to play major roles in these functions. Whereas Arabidopsis (Arabidopsis thaliana) possesses a single HKT transporter, involved in Na+ transport in vascular tissues, a larger number of HKT transporters are present in rice (Oryza sativa) as well as in other monocots. Here, we report on the expression patterns and functional properties of three rice HKT transporters, OsHKT1;1, OsHKT1;3, and OsHKT2;1. In situ hybridization experiments revealed overlapping but distinctive and complex expression patterns, wider than expected for such a transporter type, including vascular tissues and root periphery but also new locations, such as osmocontractile leaf bulliform cells (involved in leaf folding). Functional analyses in Xenopus laevis oocytes revealed striking diversity. OsHKT1;1 and OsHKT1;3, shown to be permeable to Na+ only, are strongly different in terms of affinity for this cation and direction of transport (inward only or reversible). OsHKT2;1 displays diverse permeation modes, Na+-K+ symport, Na+ uniport, or inhibited states, depending on external Na+ and K+ concentrations within the physiological concentration range. The whole set of data indicates that HKT transporters fulfill distinctive roles at the whole plant level in rice, each system playing diverse roles in different cell types. Such a large diversity within the HKT transporter family might be central to the regulation of K+ and Na+ accumulation in monocots.


Plant Journal | 2011

In vivo grapevine anthocyanin transport involves vesicle‐mediated trafficking and the contribution of anthoMATE transporters and GST

Camila Gomez; Geneviève Conejero; Laurent Torregrosa; Véronique Cheynier; Nancy Terrier; Agnès Ageorges

In cells, anthocyanin pigments are synthesized at the cytoplasmic surface of the endoplasmic reticulum, and are then transported and finally accumulated inside the vacuole. In Vitis vinifera (grapevine), two kinds of molecular actors are putatively associated with the vacuolar sequestration of anthocyanins: a glutathione-S-transferase (GST) and two MATE-type transporters, named anthoMATEs. However, the sequence of events by which anthocyanins are imported into the vacuole remains unclear. We used MYBA1 transformed hairy roots as a grapevine model tissue producing anthocyanins, and took advantage of the unique autofluorescence of anthocyanins to study their cellular trafficking. In these tissues, anthocyanins were not only visible in the largest vacuoles, but were also present at higher concentrations in several vesicles of different sizes. In the cell, small vesicles actively moved alongside the tonoplast, suggesting a vesicular trafficking to the vacuole. Subcellular localization assays revealed that anthoMATE transporters were closely related with these small vesicles, whereas GST was localized in the cytoplasm around the nucleus, suggesting an association with the endoplasmic reticulum. Furthermore, cells in hairy roots expressing anthoMATE antisense did not display small vesicles filled with anthocyanins, whereas in hairy roots expressing GST antisense, anthocyanins were accumulated in vesicles but not in the vacuole. This suggests that in grapevine, anthoMATE transporters and GST are involved in different anthocyanin transport mechanisms.


Plant Physiology | 2009

Identification of the Endodermal Vacuole as the Iron Storage Compartment in the Arabidopsis Embryo

Hannetz Roschzttardtz; Geneviève Conejero; Catherine Curie; Stéphane Mari

Deciphering how cellular iron (Fe) pools are formed, where they are localized, and which ones are remobilized represents an important challenge to better understand Fe homeostasis. The recent development of imaging techniques, adapted to plants, has helped gain insight into these events. We have analyzed the localization of Fe during embryo development in Arabidopsis (Arabidopsis thaliana) with an improved histochemical staining based on Perls coloration intensified by a second reaction with diaminobenzidine and hydrogen peroxide. The procedure, quick to set up and specific for Fe, was applied directly on histological sections, which dramatically increased its subcellular resolution. We have thus unambiguously shown that in dry seeds Fe is primarily stored in the endodermis cell layer, within the vacuoles, from which it is remobilized during germination. In the vit1-1 mutant, in which the Fe pattern is disturbed, Fe is stored in vacuoles of cortex cells of the hypocotyl/radicle axis and in a single subepidermal cell layer in the cotyledons. During the early stages of embryo development, Fe is evenly distributed in the cells of both wild-type and vit1-1 mutants. Fe eventually accumulates in endodermal cells as the vascular system develops, a process that is impaired in vit1-1. Our results have uncovered a new role for the endodermis in Fe storage in the embryo and have established that the Perls/diaminobenzidine staining is a method of choice to detect Fe in plant tissues and cells.


Plant Physiology | 2010

Auxin Carriers Localization Drives Auxin Accumulation in Plant Cells Infected by Frankia in Casuarina glauca Actinorhizal Nodules

Francine Perrine-Walker; Patrick Doumas; Mikaël Lucas; Virginie Vaissayre; Nicholas Beauchemin; Leah R. Band; Jérôme Chopard; Geneviève Conejero; Benjamin Péret; John R. King; Jean-Luc Verdeil; Valérie Hocher; Claudine Franche; Malcolm J. Bennett; Louis S. Tisa; Laurent Laplaze

Actinorhizal symbioses are mutualistic interactions between plants and the soil bacteria Frankia that lead to the formation of nitrogen-fixing root nodules. Little is known about the signaling mechanisms controlling the different steps of the establishment of the symbiosis. The plant hormone auxin has been suggested to play a role. Here we report that auxin accumulates within Frankia-infected cells in actinorhizal nodules of Casuarina glauca. Using a combination of computational modeling and experimental approaches, we establish that this localized auxin accumulation is driven by the cell-specific expression of auxin transporters and by Frankia auxin biosynthesis in planta. Our results indicate that the plant actively restricts auxin accumulation to Frankia-infected cells during the symbiotic interaction.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Related pituitary cell lineages develop into interdigitated 3D cell networks

Lionel Budry; Chrystel Lafont; Taoufik El Yandouzi; Norbert Chauvet; Geneviève Conejero; Jacques Drouin; Patrice Mollard

The pituitary gland has long been considered to be a random patchwork of hormone-producing cells. By using pituitary-scale tridimensional imaging for two of the least abundant cell lineages, the corticotropes and gonadotropes, we have now uncovered highly organized and interdigitated cell networks that reflect homotypic and heterotypic interactions between cells. Although newly differentiated corticotrope cells appear on the ventral surface of the gland, they rapidly form homotypic strands of cells that extend from the lateral tips of the anterior pituitary along its ventral surface and into the medial gland. As the corticotrope network is established away from the microvasculature, cell morphology changes from rounded, to polygonal, and finally to cells with long cytoplasmic processes or cytonemes that connect corticotropes to the perivascular space. Gonadotropes differentiate later and are positioned in close proximity to corticotropes and capillaries. Blockade of corticotrope terminal differentiation produced by knockout of the gene encoding the transcription factor Tpit results in smaller gonadotropes within an expanded cell network, particularly in the lateral gland. Thus, pituitary-scale tridimensional imaging reveals highly structured cell networks of unique topology for each pituitary lineage. The sequential development of interdigitated cell networks during organogenesis indicate that extensive cell:cell interactions lead to a highly ordered cell positioning rather than random patchwork.


Journal of Biological Chemistry | 2011

Plant cell nucleolus as a hot spot for iron.

Hannetz Roschzttardtz; Louis Grillet; Marie-Pierre Isaure; Geneviève Conejero; Richard Ortega; Catherine Curie; Stéphane Mari

Many central metabolic processes require iron as a cofactor and take place in specific subcellular compartments such as the mitochondrion or the chloroplast. Proper iron allocation in the different organelles is thus critical to maintain cell function and integrity. To study the dynamics of iron distribution in plant cells, we have sought to identify the different intracellular iron pools by combining three complementary imaging approaches, histochemistry, micro particle-induced x-ray emission, and synchrotron radiation micro X-ray fluorescence. Pea (Pisum sativum) embryo was used as a model in this study because of its large cell size and high iron content. Histochemical staining with ferrocyanide and diaminobenzidine (Perls/diaminobenzidine) strongly labeled a unique structure in each cell, which co-labeled with the DNA fluorescent stain DAPI, thus corresponding to the nucleus. The unexpected presence of iron in the nucleus was confirmed by elemental imaging using micro particle-induced x-ray emission. X-ray fluorescence on cryo-sectioned embryos further established that, quantitatively, the iron concentration found in the nucleus was higher than in the expected iron-rich organelles such as plastids or vacuoles. Moreover, within the nucleus, iron was particularly accumulated in a subcompartment that was identified as the nucleolus as it was shown to transiently disassemble during cell division. Taken together, our data uncover an as yet unidentified although abundant iron pool in the cell, which is located in the nuclei of healthy, actively dividing plant tissues. This result paves the way for the discovery of a novel cellular function for iron related to nucleus/nucleolus-associated processes.


Plant Molecular Biology | 1995

Organization and expression of the gene coding for the potassium transport system AKT1 of Arabidopsis thaliana

Mireille Basset; Geneviève Conejero; Marc Lepetit; Pierre Fourcroy; Hervé Sentenac

We have isolated and sequenced the genomic clone coding for the potassium transport system AKT1 of Arabidopsis thaliana. Southern blot analysis indicated that the gene is present in one copy in the Arabidopsis genome. The coding sequence is interrupted by ten introns. Sequence comparisons of AKT1 polypeptide with the voltage-gated inward rectifying Arabidopsis K+ channel KAT1, and with voltageor cyclic nucleotide-gated channels from insects and mammals, revealed a highly conserved domain found specifically in both plant polypeptides, and correponding to about the last 50 amino acids of their C-terminal region. Northern blot analysis of AKT1 expression in Arabidopsis seedlings indicated that AKT1 is preferentially expressed in roots. No transcript was detected in extracts from heterotrophic suspension culture cells. Depleting K+ in the Arabidopsis seedling culture medium for 4 days led to a strong decrease in K+ tissue content (ca. 50%), but did not affect AKT1 transcript level.


The Plant Cell | 2013

The Arabidopsis YELLOW STRIPE LIKE4 and 6 Transporters Control Iron Release from the Chloroplast

Fanchon Divol; Daniel Couch; Geneviève Conejero; Hannetz Roschzttardtz; Stéphane Mari; Catherine Curie

YSL4 and YSL6 are two members of the yellow stripe–like family of metal transporters in Arabidopsis. This study reveals that YSL6 is a protein of the chloroplast envelope, which together with YSL4, is required for the release of iron from the chloroplast. They are active in dedifferentiating chloroplasts of mature embryos and senescent leaves, likely protecting them from free iron toxicity. In most plant cell types, the chloroplast represents the largest sink for iron, which is both essential for chloroplast metabolism and prone to cause oxidative damage. Here, we show that to buffer the potentially harmful effects of iron, besides ferritins for storage, the chloroplast is equipped with specific iron transporters that respond to iron toxicity by removing iron from the chloroplast. We describe two transporters of the YELLOW STRIPE1-LIKE family from Arabidopsis thaliana, YSL4 and YSL6, which are likely to fulfill this function. Knocking out both YSL4 and YSL6 greatly reduces the plant’s ability to cope with excess iron. Biochemical and immunolocalization analyses showed that YSL6 resides in the chloroplast envelope. Elemental analysis and histochemical staining indicate that iron is trapped in the chloroplasts of the ysl4 ysl6 double mutants, which also accumulate ferritins. Also, vacuolar iron remobilization and NRAMP3/4 expression are inhibited. Furthermore, ubiquitous expression of YSL4 or YSL6 dramatically reduces plant tolerance to iron deficiency and decreases chloroplastic iron content. These data demonstrate a fundamental role for YSL4 and YSL6 in managing chloroplastic iron. YSL4 and YSL6 expression patterns support their physiological role in detoxifying iron during plastid dedifferentiation occurring in embryogenesis and senescence.

Collaboration


Dive into the Geneviève Conejero's collaboration.

Top Co-Authors

Avatar

Jean-Luc Verdeil

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar

Stéphane Mari

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Catherine Curie

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Catherine Massonnet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christine Granier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Francine Casse

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean-Christophe Palauqui

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Françoise Cellier

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge