Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Genevieve Laureys is active.

Publication


Featured researches published by Genevieve Laureys.


Nature | 2008

Identification of ALK as a major familial neuroblastoma predisposition gene

Yael P. Mosse; Marci Laudenslager; Luca Longo; Kristina A. Cole; Andrew K.W. Wood; Edward F. Attiyeh; Michael J. Laquaglia; Rachel Sennett; Jill Lynch; Patrizia Perri; Genevieve Laureys; Frank Speleman; Cecilia Kim; Cuiping Hou; Hakon Hakonarson; Ali Torkamani; Nicholas J. Schork; Garrett M. Brodeur; Gian Paolo Tonini; Eric Rappaport; Marcella Devoto; John M. Maris

Neuroblastoma is a childhood cancer that can be inherited, but the genetic aetiology is largely unknown. Here we show that germline mutations in the anaplastic lymphoma kinase (ALK) gene explain most hereditary neuroblastomas, and that activating mutations can also be somatically acquired. We first identified a significant linkage signal at chromosome bands 2p23–24 using a whole-genome scan in neuroblastoma pedigrees. Resequencing of regional candidate genes identified three separate germline missense mutations in the tyrosine kinase domain of ALK that segregated with the disease in eight separate families. Resequencing in 194 high-risk neuroblastoma samples showed somatically acquired mutations in the tyrosine kinase domain in 12.4% of samples. Nine of the ten mutations map to critical regions of the kinase domain and were predicted, with high probability, to be oncogenic drivers. Mutations resulted in constitutive phosphorylation, and targeted knockdown of ALK messenger RNA resulted in profound inhibition of growth in all cell lines harbouring mutant or amplified ALK, as well as in two out of six wild-type cell lines for ALK. Our results demonstrate that heritable mutations of ALK are the main cause of familial neuroblastoma, and that germline or acquired activation of this cell-surface kinase is a tractable therapeutic target for this lethal paediatric malignancy.


The New England Journal of Medicine | 1999

Gain of Chromosome Arm 17q and Adverse Outcome in Patients with Neuroblastoma

Nick Bown; Simon Cotterill; Maria Łastowska; Seamus O'Neill; Andrew D.J. Pearson; Dominique Plantaz; Mounira Meddeb; Gisèle Danglot; Christian Brinkschmidt; Holger Christiansen; Genevieve Laureys; James Nicholson; Alain Bernheim; David R. Betts; Jo Vandesompele; Nadine Van Roy; Frank Speleman

BACKGROUND Gain of genetic material from chromosome arm 17q (gain of segment 17q21-qter) is the most frequent cytogenetic abnormality of neuroblastoma cells. This gain has been associated with advanced disease, patients who are > or =1 year old, deletion of chromosome arm 1p, and amplification of the N-myc oncogene, all of which predict an adverse outcome. We investigated these associations and evaluated the prognostic importance of the status of chromosome 17. METHODS We compiled molecular cytogenetic analyses of chromosome 17 in primary neuroblastomas in 313 patients at six European centers. Clinical and survival information were collected, along with data on 1p, N-myc, and ploidy. RESULTS Unbalanced gain of segment 17q21-qter was found in 53.7 percent of the tumors, whereas the chromosome was normal in 46.3 percent. The gain of 17q was characteristic of advanced tumors and of tumors in children > or =1 year of age and was strongly associated with the deletion of 1p and amplification of N-myc. No tumor showed amplification of N-myc in the absence of either deletion of 1p or gain of 17q. Gain of 17q was a significant predictive factor for adverse outcome in univariate analysis. Among the patients with this abnormality, overall survival at five years was 30.6 percent (95 percent confidence interval, 21 to 40 percent), as compared with 86.0 percent (95 percent confidence interval, 78 to 91 percent) among those with normal 17q status. in multivariate analysis, gain of 17q was the most powerful prognostic factor, followed by the presence of stage 4 disease and deletion of 1p (hazard ratios, 3.4, 2.3, and 1.9, respectively). CONCLUSIONS Gain of chromosome segment 17q21-qter is an important prognostic factor in children with neuroblastoma.


The New England Journal of Medicine | 1996

Allelic Loss of Chromosome 1p as a Predictor of Unfavorable Outcome in Patients with Neuroblastoma

H.N. Caron; P. van Sluis; J. de Kraker; J.P.M. Bökkerink; M Egeler; Genevieve Laureys; Rosalyn Slater; Andries Westerveld; P.A. Voûte; Rogier Versteeg

BACKGROUND Neuroblastoma is a childhood tumor derived from cells of the neural crest, with a widely variable outcome. Differences in the behavior and prognosis of the tumor suggest that neuroblastoma can be divided into several biologic subgroups. We evaluated the most frequent genetic abnormalities in neuroblastoma to determine their prognostic value. METHODS We used Southern blot analysis to study the allelic loss of chromosomes 1p, 4p, 11q, and 14q, the duplication of chromosome 17q, and the amplification of the N-myc oncogene in 89 neuroblastomas. We also determined the nuclear DNA content of the tumor cells. RESULTS Allelic loss of chromosome 1p, N-myc amplification, and extra copies of chromosome 17q were significantly associated with unfavorable outcome. In a multivariate analysis, loss of chromosome 1p was the most powerful prognostic factor. It provided strong prognostic information when it was included in multivariate models containing the prognostic factors of age and stage or serum ferritin level and stage. Among the patients with stage I, II, or IVS disease, the mean (+/- SD) three-year event-free survival was 100 percent in those without allelic loss of chromosome 1p and 34 +/- 15 percent in those with such loss; the rates of three-year event-free survival among the patients with stage III and stage IV disease were 53 +/- 10 percent and 0 percent, respectively. CONCLUSIONS The loss of chromosome 1p is a strong prognostic factor in patients with neuroblastoma, independently of age and stage. It reliably identifies patients at high risk in stages I, II, and IVS, which are otherwise clinically favorable. More intensive therapy may be considered in these patients. Patients in stages III and IV with allelic loss of chromosome 1p have a very poor outlook, whereas those without such loss are at moderate risk.


Leukemia | 2000

Long-term results of three randomized trials (58831, 58832, 58881) in childhood acute lymphoblastic leukemia: a CLCG-EORTC report. Children Leukemia Cooperative Group.

Etienne Vilmer; Stefan Suciu; Alina Ferster; Yves Bertrand; Hélène Cavé; Antoine Thyss; Yves Benoit; Nicole Dastugue; Matthieu Fournier; G. Souillet; Anne-Marie Manel; Alain Robert; Brigitte Nelken; Frédéric Millot; P. Lutz; Xavier Rialland; F Mechinaud; Patrick Boutard; Catherine Behar; J M Chantraine; Emannuel Plouvier; Genevieve Laureys; Penelope Brock; A Uyttebroeck; Geneviève Margueritte; Dominique Plantaz; Lucilia Norton; N Francotte; Johan Gyselinck; C Waterkeyn

We present here the long-term results of three randomized clinical trials conducted on children with newly diagnosed acute lymphoblastic leukemia (ALL) between 1983 and 1998 by the Children Leukemia Cooperative Group (CLCG) from EORTC. In study 58831/32, the overall event-free survival (EFS) rates (± s.e.) at 6 and 10 years were 66% ± 1.8% and 65% ± 1.8%, respectively, and the risk of isolated central nervous system (CNS) relapse was 6% ± 1% and 7% ± 1%, respectively. In patients with a standard risk of relapse the omission of cyclophosphamide had no adverse effect on disease-free survival rates at 10 years (trial 58831). In medium- and high-risk patients the omission of radiotherapy did not increase the risk of CNS or systemic relapse (trial 58832). In study 58881 (1989–1998) the overall EFS rate at 8 years was 68.4% ± 1.2% and the risk of isolated CNS relapse was 4.2% ± 0.5%. In this trial which adressed three randomized questions, the following results were obtained: the combination of cytarabine at high doses with methotrexate at high doses during interval therapy did not improve prognosis. The addition of 6-mercaptopurine iv during maintenance increased the risk of late relapse. E. coli asparaginase was more toxic and has a higher efficacy than erwinia asparaginase. leukocyte counts >100 × 109/l, specific genetic abnormalities, a poor initial response to steroids or a high level of minimal residual disease at early time points were consistently associated with an adverse prognosis in the 58881 trial.


Modern Pathology | 2002

Quantification of MYCN, DDX1, and NAG gene copy number in neuroblastoma using a real-time quantitative PCR assay.

Katleen De Preter; Frank Speleman; Valérie Combaret; John Lunec; Genevieve Laureys; Bert H J Eussen; Nadine Francotte; Julian Board; A. D. J. Pearson; Anne De Paepe; Nadine Van Roy; Jo Vandesompele

Amplification of the proto-oncogene MYCN is a strong adverse prognostic factor in neuroblastoma patients in all tumor stages. The status of the MYCN gene has become an important factor in clinical decision making and therapy stratification. Consequently, fast and accurate assessment of MYCN gene copy number is of the utmost importance and the use of two independent methods to determine MYCN status is recommended. For these reasons we have developed and evaluated a real-time quantitative PCR (Q-PCR) assay as an alternative for time-consuming Southern blot analysis (SB), and as a second independent technique in parallel with fluorescence in situ hybridization (FISH) analysis. Advantages of Q-PCR are a large dynamic range of quantification, no requirement for post-PCR sample handling and the need for very small amounts of starting material. The accuracy of the assay was illustrated by measurement of MYCN single gene copy changes in DNA samples of two patients with 2p deletion and duplication, respectively. Two different detection chemistries i.e., a sequence specific TaqMan probe and a generic DNA binding dye SYBR Green I were evaluated and shown to yield similar results. Also, two different calculation methods for copy number determination were used i.e., the kinetic method and the comparative CT method, and shown to be equivalent. In total, 175 neuroblastoma samples with known MYCN status, as determined by FISH and/or SB, were examined. Q-PCR data were highly concordant with FISH and SB data. In addition to MYCN copy number evaluation, DDX1 and NAG gene copy numbers were determined using a similar Q-PCR strategy. Survival analysis pointed out that DDX1 and/or NAG amplification has no additional adverse effect on prognosis.


Clinical Cancer Research | 2010

Meta-analysis of Neuroblastomas Reveals a Skewed ALK Mutation Spectrum in Tumors with MYCN Amplification

Sara De Brouwer; Katleen De Preter; Candy Kumps; Piotr Zabrocki; Michaël Porcu; Ellen M. Westerhout; Arjan Lakeman; Jo Vandesompele; Jasmien Hoebeeck; Tom Van Maerken; Anne De Paepe; Genevieve Laureys; Johannes H. Schulte; Alexander Schramm; Caroline Van den Broecke; Joëlle Vermeulen; Nadine Van Roy; Klaus Beiske; Marleen Renard; Rosa Noguera; Olivier Delattre; Isabelle Janoueix-Lerosey; Per Kogner; Tommy Martinsson; Akira Nakagawara; Miki Ohira; Huib N. Caron; Angelika Eggert; Jan Cools; Rogier Versteeg

Purpose: Activating mutations of the anaplastic lymphoma kinase (ALK) were recently described in neuroblastoma. We carried out a meta-analysis of 709 neuroblastoma tumors to determine their frequency and mutation spectrum in relation to genomic and clinical parameters, and studied the prognostic significance of ALK copy number and expression. Experimental Design: The frequency and type of ALK mutations, copy number gain, and expression were analyzed in a new series of 254 neuroblastoma tumors. Data from 455 published cases were used for further in-depth analysis. Results: ALK mutations were present in 6.9% of 709 investigated tumors, and mutations were found in similar frequencies in favorable [International Neuroblastoma Staging System (INSS) 1, 2, and 4S; 5.7%] and unfavorable (INSS 3 and 4; 7.5%) neuroblastomas (P = 0.087). Two hotspot mutations, at positions R1275 and F1174, were observed (49% and 34.7% of the mutated cases, respectively). Interestingly, the F1174 mutations occurred in a high proportion of MYCN-amplified cases (P = 0.001), and this combined occurrence was associated with a particular poor outcome, suggesting a positive cooperative effect between both aberrations. Furthermore, the F1174L mutant was characterized by a higher degree of autophosphorylation and a more potent transforming capacity as compared with the R1275Q mutant. Chromosome 2p gains, including the ALK locus (91.8%), were associated with a significantly increased ALK expression, which was also correlated with poor survival. Conclusions: ALK mutations occur in equal frequencies across all genomic subtypes, but F1174L mutants are observed in a higher frequency of MYCN-amplified tumors and show increased transforming capacity as compared with the R1275Q mutants. Clin Cancer Res; 16(17); 4353–62. ©2010 AACR.


Journal of Clinical Oncology | 2005

Unequivocal Delineation of Clinicogenetic Subgroups and Development of a New Model for Improved Outcome Prediction in Neuroblastoma

Jo Vandesompele; Michael Baudis; Katleen De Preter; Nadine Van Roy; Peter F. Ambros; Nick Bown; Christian Brinkschmidt; Holger Christiansen; Valérie Combaret; Maria Lastowska; James Nicholson; Anne O'Meara; Dominique Plantaz; Raymond L. Stallings; Bénédicte Brichard; Caroline Van den Broecke; Sylvia De Bie; Anne De Paepe; Genevieve Laureys; Frank Speleman

PURPOSE Neuroblastoma is a genetically heterogeneous pediatric tumor with a remarkably variable clinical behavior ranging from widely disseminated disease to spontaneous regression. In this study, we aimed for comprehensive genetic subgroup discovery and assessment of independent prognostic markers based on genome-wide aberrations detected by comparative genomic hybridization (CGH). MATERIALS AND METHODS Published CGH data from 231 primary untreated neuroblastomas were converted to a digitized format suitable for global data mining, subgroup discovery, and multivariate survival analyses. RESULTS In contrast to previous reports, which included only a few genetic parameters, we present here for the first time a strategy that allows unbiased evaluation of all genetic imbalances detected by CGH. The presented approach firmly established the existence of three different clinicogenetic subgroups and indicated that chromosome 17 status and tumor stage were the only independent significant predictors for patient outcome. Important new findings were: (1) a normal chromosome 17 status as a delineator of a subgroup of presumed favorable-stage tumors with highly increased risk; (2) the recognition of a survivor signature conferring 100% 5-year survival for stage 1, 2, and 4S tumors presenting with whole chromosome 17 gain; and (3) the identification of 3p deletion as a hallmark of older age at diagnosis. CONCLUSION We propose a new regression model for improved patient outcome prediction, incorporating tumor stage, chromosome 17, and amplification/deletion status. These findings may prove highly valuable with respect to more reliable risk assessment, evaluation of clinical results, and optimization of current treatment protocols.


Genes, Chromosomes and Cancer | 1998

Genetic heterogeneity of neuroblastoma studied by comparative genomic hybridization

Jo Vandesompele; Nadine Van Roy; Mireille Van Gele; Genevieve Laureys; Peter P. Ambros; Pierre Heimann; Christine Devalck; Ed Schuuring; Penelope Brock; Jacques Otten; Jan Gyselinck; Anne De Paepe; Frank Speleman

Comparative genomic hybridization (CGH) analysis was performed on 36 neuroblastomas of both low and high stage of disease. This study significantly increases the number of neuroblastoma tumors studied by CGH. Analysis of larger series of tumors is particularly important in view of the different clinical subgroups that are recognized for this tumor. The present data and a comparison with all published CGH data on neuroblastoma provide further insights into the genetic heterogeneity of neuroblastoma. Stage 1, 2, and 4S tumors showed predominantly whole chromosome gains and losses. A similar pattern of whole chromosome imbalances, although less frequent, was observed in stage 3 and 4 tumors, in addition to partial chromosome gains and losses. An increase in chromosome 17 or 17q copy number was observed in 81% of tumors. The most frequent losses, either through partial or whole chromosome underrepresentation, were observed for 1p (25%), 3p (25%), 4p (14%), 9p (19%), 11q (28%), and 14q (31%). The presence of 3p, 11q or 14q deletions defines a genetic subset of neuroblastomas and contributes to the further genetic characterization of stage 3 and 4 tumors without MYCN amplification (MNA) and 1p deletion. The present study also provides additional evidence for a possible role of genes at 11q13 in neuroblastoma. In a few cases, 1p deletion or MNA detected by FISH or Southern blotting was not found by CGH, indicating that the use of a second, independent technique for evaluation of these genetic parameters is recommended. Genes Chromosomes Cancer 23:141–152, 1998.


Genome Biology | 2006

Human fetal neuroblast and neuroblastoma transcriptome analysis confirms neuroblast origin and highlights neuroblastoma candidate genes.

Katleen De Preter; Jo Vandesompele; Pierre Heimann; Nurten Yigit; Siv Beckman; Alexander Schramm; Angelika Eggert; Raymond L. Stallings; Yves Benoit; Marleen Renard; Anne De Paepe; Genevieve Laureys; Sven Påhlman; Franki Speleman

BackgroundNeuroblastoma tumor cells are assumed to originate from primitive neuroblasts giving rise to the sympathetic nervous system. Because these precursor cells are not detectable in postnatal life, their transcription profile has remained inaccessible for comparative data mining strategies in neuroblastoma. This study provides the first genome-wide mRNA expression profile of these human fetal sympathetic neuroblasts. To this purpose, small islets of normal neuroblasts were isolated by laser microdissection from human fetal adrenal glands.ResultsExpression of catecholamine metabolism genes, and neuronal and neuroendocrine markers in the neuroblasts indicated that the proper cells were microdissected. The similarities in expression profile between normal neuroblasts and malignant neuroblastomas provided strong evidence for the neuroblast origin hypothesis of neuroblastoma. Next, supervised feature selection was used to identify the genes that are differentially expressed in normal neuroblasts versus neuroblastoma tumors. This approach efficiently sifted out genes previously reported in neuroblastoma expression profiling studies; most importantly, it also highlighted a series of genes and pathways previously not mentioned in neuroblastoma biology but that were assumed to be involved in neuroblastoma pathogenesis.ConclusionThis unique dataset adds power to ongoing and future gene expression studies in neuroblastoma and will facilitate the identification of molecular targets for novel therapies. In addition, this neuroblast transcriptome resource could prove useful for the further study of human sympathoadrenal biogenesis.


Oncogene | 2010

MYCN/c-MYC-induced microRNAs repress coding gene networks associated with poor outcome in MYCN/c-MYC-activated tumors

Pieter Mestdagh; Erik Fredlund; Filip Pattyn; Johannes H. Schulte; Dillon C. Muth; Joëlle Vermeulen; Candy Kumps; Stefanie Schlierf; K. De Preter; N. Van Roy; Rosa Noguera; Genevieve Laureys; Alexander Schramm; Angelika Eggert; Frank Westermann; Frank Speleman; Jo Vandesompele

Increased activity of MYC protein-family members is a common feature in many cancers. Using neuroblastoma as a tumor model, we established a microRNA (miRNA) signature for activated MYCN/c-MYC signaling in two independent primary neuroblastoma tumor cohorts and provide evidence that c-MYC and MYCN have overlapping functions. On the basis of an integrated approach including miRNA and messenger RNA (mRNA) gene expression data we show that miRNA activation contributes to widespread mRNA repression, both in c-MYC- and MYCN-activated tumors. c-MYC/MYCN-induced miRNA activation was shown to be dependent on c-MYC/MYCN promoter binding as evidenced by chromatin immunoprecipitation. Finally, we show that pathways, repressed through c-MYC/MYCN miRNA activation, are highly correlated to tumor aggressiveness and are conserved across different tumor entities suggesting that c-MYC/MYCN activate a core set of miRNAs for cooperative repression of common transcriptional programs related to disease aggressiveness. Our results uncover a widespread correlation between miRNA activation and c-MYC/MYCN-mediated coding gene expression modulation and further substantiate the overlapping functions of c-MYC and MYCN in the process of tumorigenesis.

Collaboration


Dive into the Genevieve Laureys's collaboration.

Top Co-Authors

Avatar

Yves Benoit

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne De Paepe

Ghent University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge