Geneviève Pilon
Laval University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Geneviève Pilon.
Gut | 2015
Fernando F. Anhê; Denis Roy; Geneviève Pilon; Stéphanie Dudonné; Sébastien Matamoros; Thibault V. Varin; Carole Garofalo; Quentin Moine; Yves Desjardins; Emile Levy; André Marette
Objective The increasing prevalence of obesity and type 2 diabetes (T2D) demonstrates the failure of conventional treatments to curb these diseases. The gut microbiota has been put forward as a key player in the pathophysiology of diet-induced T2D. Importantly, cranberry (Vaccinium macrocarpon Aiton) is associated with a number of beneficial health effects. We aimed to investigate the metabolic impact of a cranberry extract (CE) on high fat/high sucrose (HFHS)-fed mice and to determine whether its consequent antidiabetic effects are related to modulations in the gut microbiota. Design C57BL/6J mice were fed either a chow or a HFHS diet. HFHS-fed mice were gavaged daily either with vehicle (water) or CE (200 mg/kg) for 8 weeks. The composition of the gut microbiota was assessed by analysing 16S rRNA gene sequences with 454 pyrosequencing. Results CE treatment was found to reduce HFHS-induced weight gain and visceral obesity. CE treatment also decreased liver weight and triglyceride accumulation in association with blunted hepatic oxidative stress and inflammation. CE administration improved insulin sensitivity, as revealed by improved insulin tolerance, lower homeostasis model assessment of insulin resistance and decreased glucose-induced hyperinsulinaemia during an oral glucose tolerance test. CE treatment was found to lower intestinal triglyceride content and to alleviate intestinal inflammation and oxidative stress. Interestingly, CE treatment markedly increased the proportion of the mucin-degrading bacterium Akkermansia in our metagenomic samples. Conclusions CE exerts beneficial metabolic effects through improving HFHS diet-induced features of the metabolic syndrome, which is associated with a proportional increase in Akkermansia spp. population.
American Journal of Physiology-endocrinology and Metabolism | 2009
Ying Liu; Simon Chewchuk; Charles Lavigne; Sophie Brûlé; Geneviève Pilon; Vanessa P. Houde; Aimin Xu; André Marette; Gary Sweeney
Endocrine effects of adipose-derived adiponectin on skeletal muscle have been shown to account, at least in part, for the anti-diabetic effects of this adipokine. Recently, the concept of myokines has gained credence, and the potential for skeletal muscle to produce adiponectin has been suggested. Here we demonstrated an increased level of adiponectin mRNA and protein expression as well as protein secretion in response to rosiglitazone treatment in L6 muscle cells. This correlated with the ability of rosiglitazone to enhance insulin sensitivity for stimulation of protein kinase B (Akt) phosphorylation and glucose transport; rosiglitazone also corrected high-glucose-induced insulin resistance in L6 cells. Overexpression of adiponectin confirmed the functional significance of local production of adiponectin in muscle cells via elevated glucose uptake and increased insulin sensitivity. In obese diabetic db/db mice, there was a change in the adiponectin expression profile in soleus and extensor digitorum longus (EDL) muscle with less high molecular weight (HMW) and more medium (MMW)/low (LMW) molecular weight species detected. Induction of obesity and insulin resistance in rats by feeding a high-fat high-sucrose diet also led to decreased muscle HMW adiponectin content that could be corrected by rosiglitazone treatment. In summary, we show the ability of skeletal muscle cells to produce adiponectin, which can mediate autocrine metabolic effects, thus establishing adiponectin as a bona fide myokine. We also demonstrate that skeletal muscle adiponectin production is altered in animal models of obesity and diabetes and that these changes can be corrected by rosiglitazone.
Metabolism-clinical and Experimental | 2011
Geneviève Pilon; Jérôme Ruzzin; Laurie-Eve Rioux; Charles Lavigne; Phillip J. White; Livar Frøyland; Hélène Jacques; Piotr Bryl; Lucie Beaulieu; André Marette
Mounting evidence suggests that the benefits of fish consumption are not limited to the well-appreciated effects of omega-3 fatty acids. We previously demonstrated that cod protein protects against the development of diet-induced insulin resistance. The goal of this study was to determine whether other fish protein sources present similar beneficial effects. Rats were fed a high-fat, high-sucrose diet containing protein from casein or fish proteins from bonito, herring, mackerel, or salmon. After 28 days, oral glucose tolerance tests or hyperinsulinemic-euglycemic clamps were performed; and tissues and plasma were harvested for biochemical analyses. Despite equal energy intake among all groups, the salmon-protein-fed group presented significantly lower weight gain that was associated with reduced fat accrual in epididymal white adipose tissue. Although this reduction in visceral adiposity was not associated with improved glucose tolerance, we found that whole-body insulin sensitivity for glucose metabolism was improved using the very sensitive hyperinsulinemic-euglycemic clamp technique. Importantly, expression of both tumor necrosis factor-α and interleukin-6 was reduced in visceral adipose tissue of all fish-protein-fed groups when compared with the casein-fed control group, suggesting that fish proteins carry anti-inflammatory properties that may protect against obesity-linked metabolic complications. Interestingly, consumption of the salmon protein diet was also found to raise circulating salmon calcitonin levels, which may underlie the reduction of weight gain in these rats. These data suggest that not all fish protein sources exert the same beneficial properties on the metabolic syndrome, although anti-inflammatory actions appear to be common.
PLOS ONE | 2010
Geneviève Pilon; Alexandre Charbonneau; Phillip J. White; Patrice Dallaire; Mylène Perreault; Sonia Kapur; André Marette
Background It is believed that the endotoxin lipopolysaccharide (LPS) is implicated in the metabolic perturbations associated with both sepsis and obesity (metabolic endotoxemia). Here we examined the role of inducible nitric oxide synthase (iNOS) in skeletal muscle insulin resistance using LPS challenge in rats and mice as in vivo models of endotoxemia. Methodology/Principal Findings Pharmacological (aminoguanidine) and genetic strategies (iNOS−/− mice) were used to counter iNOS induction in vivo. In vitro studies using peroxynitrite (ONOO−) or inhibitors of the iNOS pathway, 1400 W and EGCG were conducted in L6 myocytes to determine the mechanism by which iNOS mediates LPS-dependent insulin resistance. In vivo, both pharmacological and genetic invalidation of iNOS prevented LPS-induced muscle insulin resistance. Inhibition of iNOS also prevented insulin resistance in myocytes exposed to cytokine/LPS while exposure of myocytes to ONOO− fully reproduced the inhibitory effect of cytokine/LPS on both insulin-stimulated glucose uptake and PI3K activity. Importantly, LPS treatment in vivo and iNOS induction and ONOO− treatment in vitro promoted tyrosine nitration of IRS-1 and reduced insulin-dependent tyrosine phosphorylation. Conclusions/Significance Our work demonstrates that iNOS-mediated tyrosine nitration of IRS-1 is a key mechanism of skeletal muscle insulin resistance in endotoxemia, and presents nitrosative modification of insulin signaling proteins as a novel therapeutic target for combating muscle insulin resistance in inflammatory settings.
Physiological Genomics | 2010
Iwona Rudkowska; Bruno Marcotte; Geneviève Pilon; Charles Lavigne; André Marette; Marie-Claude Vohl
Numerous studies have demonstrated the beneficial effects of fish consumption on inflammatory markers. Until now, these beneficial effects of fish consumption have been mostly linked to the omega-3 fatty acids (FA). The objective of the present study was to examine, in vitro, whether expression levels of genes involved in the inflammatory response differ in human macrophages incubated with casein hydrolysates (CH) or fish protein hydrolysates (FPH) in the presence or absence of omega-3 FA compared with omega-3 FA alone. Peripheral blood monocytes differentiated into macrophages from 10 men were incubated in the presence of omega-3 FA (10 microM eicosapentaenoic acid and 5 microM docosahexaenoic acid) or CH or FPH (10, 100, 1,000 microg) with or without omega-3 FA for 48 h. Results demonstrate that expression levels of tumor necrosis factoralpha (TNFalpha) had a tendency to be lower after the addition of FPH alone or CH with omega-3 FA compared with omega-3 FA treatment. Furthermore, the combination of FPH and omega-3 FA synergistically decreased expression levels of TNFalpha compared to treatment with omega-3 FA or FPH alone. No difference on gene expression levels of interleukin-6 was observed between treatments. In conclusion, these preliminary results suggest that the anti-inflammatory effects of fish consumption can be explained by a synergistic effect of the omega-3 FA with the protein components of fish on TNFalpha expression and therefore contribute to the beneficial effects of fish consumption. Hence, follow-up studies should be performed to confirm the effects of a diet rich in FPH and omega-3 FA on serum proinflammatory cytokine concentrations.
Gut microbes | 2016
Fernando F. Anhê; Geneviève Pilon; Denis Roy; Yves Desjardins; Emile Levy; André Marette
ABSTRACT The gut and its bacterial colonizers are now well characterized as key players in whole-body metabolism, opening new avenues of research and generating great expectation for new treatments against obesity and its cardiometabolic complications. As diet is the main environmental factor affecting the gut microbiota, it has been suggested that fruits and vegetables, whose consumption is strongly associated with a healthy lifestyle, may carry phytochemicals that could help maintain intestinal homeostasis and metabolic health. We recently demonstrated that oral administration of a cranberry extract rich in polyphenols prevented diet-induced obesity and several detrimental features of the metabolic syndrome in association with a remarkable increase in the abundance of the mucin-degrading bacterium Akkermansia in the gut microbiota of mice. This addendum provides an extended discussion in light of recent discoveries suggesting a mechanistic link between polyphenols and Akkermansia, also contemplating how this unique microorganism may be exploited to fight the metabolic syndrome.
Food Chemistry | 2014
Cyril Roblet; Alain Doyen; Jean Amiot; Geneviève Pilon; André Marette; Laurent Bazinet
Soy peptides consumption has been associated with beneficial effects in type 2 diabetes patients. However, the peptide fractions responsible for these effects, and their mechanisms of action, have not been identified yet. In this study, we have isolated soybean peptides by electrodialysis with an ultrafiltration membrane (EDUF) at 50 V/100 kDa, and tested them for their capacity to improve glucose uptake in L6 muscle cells. We observed that these fractions were able to significantly enhance glucose uptake in the presence of insulin. The reported bioactivity would be due to the low molecular weight peptides (300-500 Da) recovered. Moreover, we observed that an enhancement of glucose uptake was correlated to the activation of the AMPK enzyme, well known for its capacity to increase glucose uptake in muscle cells. To our knowledge, this is the first time that bioactive peptides with glucose uptake activity have been isolated from a complex soy matrix, and that the implication of AMPK in it is demonstrated.
Journal of Nutrition | 2015
Geneviève Chevrier; Patricia L. Mitchell; Laurie-Eve Rioux; Fida M. Hasan; Tianyi Jin; Cyril Roblet; Alain Doyen; Geneviève Pilon; Philippe St-Pierre; Charles Lavigne; Laurent Bazinet; Hélène Jacques; Thomas J. Gill; Roger S. McLeod; André Marette
BACKGROUND We previously reported that fish proteins can alleviate metabolic syndrome (MetS) in obese animals and human subjects. OBJECTIVES We tested whether a salmon peptide fraction (SPF) could improve MetS in mice and explored potential mechanisms of action. METHODS ApoB(100) only, LDL receptor knockout male mice (LDLR(-/-)/ApoB(100/100)) were fed a high-fat and -sucrose (HFS) diet (25 g/kg sucrose). Two groups were fed 10 g/kg casein hydrolysate (HFS), and 1 group was additionally fed 4.35 g/kg fish oil (FO; HFS+FO). Two other groups were fed 10 g SPF/kg (HFS+SPF), and 1 group was additionally fed 4.35 g FO/kg (HFS+SPF+FO). A fifth (reference) group was fed a standard feed pellet diet. We assessed the impact of dietary treatments on glucose tolerance, adipose tissue inflammation, lipid homeostasis, and hepatic insulin signaling. The effects of SPF on glucose uptake, hepatic glucose production, and inducible nitric oxide synthase activity were further studied in vitro with the use of L6 myocytes, FAO hepatocytes, and J774 macrophages. RESULTS Mice fed HFS+SPF or HFS+SPF+FO diets had lower body weight (protein effect, P = 0.024), feed efficiency (protein effect, P = 0.018), and liver weight (protein effect, P = 0.003) as well as lower concentrations of adipose tissue cytokines and chemokines (protein effect, P ≤ 0.003) compared with HFS and HFS+FO groups. They also had greater glucose tolerance (protein effect, P < 0.001), lower activation of the mammalian target of rapamycin complex 1/S6 kinase 1/insulin receptor substrate 1 (mTORC1/S6K1/IRS1) pathway, and increased insulin signaling in liver compared with the HFS and HFS+FO groups. The HFS+FO, HFS+SPF, and HFS+SPF+FO groups had lower plasma triglycerides (protein effect, P = 0.003; lipid effect, P = 0.002) than did the HFS group. SPF increased glucose uptake and decreased HGP and iNOS activation in vitro. CONCLUSIONS SPF reduces obesity-linked MetS features in LDLR(-/-)/ApoB(100/100) mice. The anti-inflammatory and glucoregulatory properties of SPF were confirmed in L6 myocytes, FAO hepatocytes, and J774 macrophages.
Journal of Agricultural and Food Chemistry | 2014
Stéphanie Dudonné; Pascal Dubé; Geneviève Pilon; André Marette; Hélène Jacques; John Weisnagel; Yves Desjardins
Plant phenolic compounds are suggested to exert pharmacological activities in regards to obesity and type-2 diabetes, but their mode of action is poorly understood due to a lack of information about their bioavailability. This work aimed to study the bioavailability of GlucoPhenol phenolic compounds, a strawberry-cranberry extracts blend, by characterizing plasma phenolic profile in obese rats. A comparison was performed by co-supplementation with an onion extract. Using an optimized μSPE-UHPLC-MS/MS method, 21 phenolic metabolites were characterized, mostly conjugated metabolites and microbial degradation products of the native phenolic compounds. Their kinetic profiles revealed either an intestinal or hepatic formation. Among identified metabolites, isorhamnetin glucuronide sulfate was found in greater amount in plasma. Three glucuronidated conjugates of strawberry-cranberry phenolic compounds, p-hydroxybenzoic acid glucuronide, catechins glucuronide, and methyl catechins glucuronide were found in higher quantities when GlucoPhenol was ingested together with onion extract (+252%, +279%, and +118% respectively), suggesting a possible induction of glucuronidation processes by quercetin. This work allowed the characterization of actual phenolic metabolites generated in vivo following a phenolic intake, the analysis of their kinetics and suggested a possible synergistic activity of phenolic compounds for improving bioavailability.
British Journal of Nutrition | 2017
Martine Paquette; Ana S. Medina Larqué; S. J. Weisnagel; Yves Desjardins; Julie Marois; Geneviève Pilon; Stéphanie Dudonné; André Marette; Hélène Jacques
Plant-derived foods rich in polyphenols are associated with several cardiometabolic health benefits, such as reduced postprandial hyperglycaemia. However, their impact on whole-body insulin sensitivity using the hyperinsulinaemic-euglycaemic clamp technique remains under-studied. We aimed to determine the effects of strawberry and cranberry polyphenols (SCP) on insulin sensitivity, glucose tolerance, insulin secretion, lipid profile, inflammation and oxidative stress markers in free-living insulin-resistant overweight or obese human subjects (n 41) in a parallel, double-blind, controlled and randomised clinical trial. The experimental group consumed an SCP beverage (333 mg SCP) daily for 6 weeks, whereas the Control group received a flavour-matched Control beverage that contained 0 mg SCP. At the beginning and at the end of the experimental period, insulin sensitivity was assessed by a hyperinsulinaemic-euglycaemic clamp, and glucose tolerance and insulin secretion by a 2-h oral glucose tolerance test (OGTT). Insulin sensitivity increased in the SCP group as compared with the Control group (+0·9 (sem 0·5)×10−3 v. −0·5 (sem 0·5)×10−3 mg/kg per min per pmol, respectively, P=0·03). Compared with the Control group, the SCP group had a lower first-phase insulin secretion response as measured by C-peptide levels during the first 30 min of the OGTT (P=0·002). No differences were detected between the two groups for lipids and markers of inflammation and oxidative stress. A 6-week dietary intervention with 333 mg of polyphenols from strawberries and cranberries improved insulin sensitivity in overweight and obese non-diabetic, insulin-resistant human subjects but was not effective in improving other cardiometabolic risk factors.