Geneviève Thon
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Geneviève Thon.
Cell | 2007
Ian B. Dodd; Mille A Micheelsen; Kim Sneppen; Geneviève Thon
Chromosomal regions can adopt stable and heritable alternative states resulting in bistable gene expression without changes to the DNA sequence. Such epigenetic control is often associated with alternative covalent modifications of histones. The stability and heritability of the states are thought to involve positive feedback where modified nucleosomes recruit enzymes that similarly modify nearby nucleosomes. We developed a simplified stochastic model for dynamic nucleosome modification based on the silent mating-type region of the yeast Schizosaccharomyces pombe. We show that the mechanism can give strong bistability that is resistant both to high noise due to random gain or loss of nucleosome modifications and to random partitioning upon DNA replication. However, robust bistability required: (1) cooperativity, the activity of more than one modified nucleosome, in the modification reactions and (2) that nucleosomes occasionally stimulate modification beyond their neighbor nucleosomes, arguing against a simple continuous spreading of nucleosome modification.
Molecular and Cellular Biology | 2002
Pernilla Bjerling; Rebecca A. Silverstein; Geneviève Thon; Amy A. Caudy; Shiv I. S. Grewal; Karl Ekwall
ABSTRACT Histone deacetylases (HDACs) are important for gene regulation and the maintenance of heterochromatin in eukaryotes. Schizosaccharomyces pombe was used as a model system to investigate the functional divergence within this conserved enzyme family. S. pombe has three HDACs encoded by the hda1+ , clr3+ , and clr6+ genes. Strains mutated in these genes have previously been shown to display strikingly different phenotypes when assayed for viability, chromosome loss, and silencing. Here, conserved differences in the substrate binding pocket identify Clr6 and Hda1 as class I HDACs, while Clr3 belongs in the class II family. Furthermore, these HDACs were shown to have strikingly different subcellular localization patterns. Hda1 was localized to the cytoplasm, while most of Clr3 resided throughout the nucleus. Finally, Clr6 was localized exclusively on the chromosomes in a spotted pattern. Interestingly, Clr3, the only HDAC present in the nucleolus, was required for ribosomal DNA (rDNA) silencing. Clr3 presumably acts directly on heterochromatin, since it colocalized with the centromere, mating-type region, and rDNA as visualized by in situ hybridization. In addition, Clr3 could be cross-linked to mat3 in chromatin immunoprecipitation experiments. Western analysis of bulk histone preparations indicated that Hda1 (class I) had a generally low level of activity in vivo and Clr6 (class I) had a high level of activity and broad in vivo substrate specificity, whereas Clr3 (class II) displayed its main activity on acetylated lysine 14 of histone H3. Thus, the distinct functions of the S. pombe HDACs are likely explained by their distinct cellular localization and their different in vivo specificities.
Molecular and Cellular Biology | 2005
Klavs R. Hansen; Gavin Burns; Juan Mata; Thomas A. Volpe; Robert A. Martienssen; Jürg Bähler; Geneviève Thon
ABSTRACT Histone modifications influence gene expression in complex ways. The RNA interference (RNAi) machinery can repress transcription by recruiting histone-modifying enzymes to chromatin, although it is not clear whether this is a general mechanism for gene silencing or whether it requires repeated sequences such as long terminal repeats (LTRs). We analyzed the global effects of the Clr3 and Clr6 histone deacetylases, the Clr4 methyltransferase, the zinc finger protein Clr1, and the RNAi proteins Dicer, RdRP, and Argonaute on the transcriptome of Schizosaccharomyces pombe (fission yeast). The clr mutants derepressed similar subsets of genes, many of which also became transcriptionally activated in cells that were exposed to environmental stresses such as nitrogen starvation. Many genes that were repressed by the Clr proteins clustered in extended regions close to the telomeres. Surprisingly few genes were repressed by both the silencing and RNAi machineries, with transcripts from centromeric repeats and Tf2 retrotransposons being notable exceptions. We found no correlation between repression by RNAi and proximity to LTRs, and the wtf family of repeated sequences seems to be repressed by histone deacetylation independent of RNAi. Our data indicate that the RNAi and Clr proteins show only a limited functional overlap and that the Clr proteins play more global roles in gene silencing.
Current Biology | 2004
Iva M. Tolić-Nørrelykke; Leonardo Sacconi; Geneviève Thon; Francesco S. Pavone
In eukaryotic cells, proper position of the mitotic spindle is necessary for successful cell division and development. We explored the nature of forces governing the positioning and elongation of the mitotic spindle in Schizosaccharomyces pombe. We hypothesized that astral microtubules exert mechanical force on the S. pombe spindle and thus help align the spindle with the major axis of the cell. Microtubules were tagged with green fluorescent protein (GFP) and visualized by two-photon microscopy. Forces were inferred both from time-lapse imaging of mitotic cells and, more directly, from mechanical perturbations induced by laser dissection of the spindle and astral microtubules. We found that astral microtubules push on the spindle poles in S. pombe, in contrast to the pulling forces observed in a number of other cell types. Further, laser dissection of the spindle midzone induced spindle collapse inward. This offers direct evidence in support of the hypothesis that spindle elongation is driven by the sliding apart of antiparallel microtubules in the spindle midzone. Broken spindles recovered and mitosis completed as usual. We propose a model of spindle centering and elongation by microtubule-based pushing forces.
Genetics | 2005
Geneviève Thon; Klavs R. Hansen; Susagna Padrissa Altes; Deepak Sidhu; Gurjeet Singh; Janne Verhein-Hansen; Michael J. Bonaduce; Amar J. S. Klar
Fission yeast heterochromatin is formed at centromeres, telomeres, and in the mating-type region where it mediates the transcriptional silencing of the mat2-P and mat3-M donor loci and the directionality of mating-type switching. We conducted a genetic screen for directionality mutants. This screen revealed the essential role of two previously uncharacterized factors, Clr7 and Clr8, in heterochromatin formation. Clr7 and Clr8 are required for localization of the Swi6 chromodomain protein and for histone H3 lysine 9 methylation, thereby influencing not only mating-type switching but also transcriptional silencing in all previously characterized heterochromatic regions, chromosome segregation, and meiotic recombination in the mating-type region. We present evidence for physical interactions between Clr7 and the mating-type region and between Clr7 and the S. pombe cullin Pcu4, indicating that a complex containing these proteins mediates an early step in heterochromatin formation and implying a role for ubiquitination at this early stage prior to the action of the Clr4 histone methyl-transferase. Like Clr7 and Clr8, Pcu4 is required for histone H3 lysine 9 methylation, and bidirectional centromeric transcripts that are normally processed into siRNA by the RNAi machinery in wild-type cells are easily detected in cells lacking Clr7, Clr8, or Pcu4. Another physical interaction, between the nucleoporin Nup189 and Clr8, suggests that Clr8 might be involved in tethering heterochromatic regions to the nuclear envelope by association with the nuclear-pore complex.
The EMBO Journal | 2004
Blerta Xhemalce; Jacob-S. Seeler; Geneviève Thon; Anne Dejean; Benoit Arcangioli
Sumoylation represents a conserved mechanism of post‐translational protein modification. We report that Pli1p, the unique fission yeast member of the SP‐RING family, is a SUMO E3 ligase in vivo and in vitro. pli1Δ cells display no obvious mitotic growth defects, but are sensitive to the microtubule‐destabilizing drug TBZ and exhibit enhanced minichromosome loss. The weakened centromeric function of pli1Δ cells may be related to the defective heterochromatin structure at the central core, as shown by the reduced silencing of an ura4 variegation reporter gene inserted at cnt and imr. Interestingly, pli1Δ cells also exhibit enhanced loss of the ura4 reporter at these loci, likely by gene conversion using homologous sequences as information donors. Moreover, pli1Δ cells exhibit consistent telomere length increase, possibly achieved by a similar process. Point mutations within the RING finger of Pli1p totally or partially reproduce the pli1 deletion phenotypes, thus correlating with their sumoylation activity. Altogether, these results strongly suggest that Pli1p, and by extension sumoylation, is involved in mechanisms that regulate recombination in particular heterochromatic repeated sequences.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Chad Ellermeier; Emily C. Higuchi; Naina Phadnis; Laerke Holm; Jennifer L. Geelhood; Geneviève Thon; Gerald R. Smith
During meiosis, the formation of viable haploid gametes from diploid precursors requires that each homologous chromosome pair be properly segregated to produce an exact haploid set of chromosomes. Genetic recombination, which provides a physical connection between homologous chromosomes, is essential in most species for proper homologue segregation. Nevertheless, recombination is repressed specifically in and around the centromeres of chromosomes, apparently because rare centromeric (or pericentromeric) recombination events, when they do occur, can disrupt proper segregation and lead to genetic disabilities, including birth defects. The basis by which centromeric meiotic recombination is repressed has been largely unknown. We report here that, in fission yeast, RNAi functions and Clr4-Rik1 (histone H3 lysine 9 methyltransferase) are required for repression of centromeric recombination. Surprisingly, one mutant derepressed for recombination in the heterochromatic mating-type region during meiosis and several mutants derepressed for centromeric gene expression during mitotic growth are not derepressed for centromeric recombination during meiosis. These results reveal a complex relation between types of repression by heterochromatin. Our results also reveal a previously undemonstrated role for RNAi and heterochromatin in the repression of meiotic centromeric recombination and, potentially, in the prevention of birth defects by maintenance of proper chromosome segregation during meiosis.
Archive | 2004
Benoit Arcangioli; Geneviève Thon
From a single haploid P (plus) or M (minus) cell, S. pombe is able to produce a population of haploids containing both mating types in nearly equal proportions. This ability is widespread among fungi, the presence of both mating types permitting the formation of diploids and eventually spores. Single-cell lineage approaches have revealed the asymmetry and rules of mating-type switching in S. pombe. Genetic and biochemical analyses have identified the organization of the mating-type loci and a number of genes required for the process of switching. They have yielded insights into the molecular mechanism of the switch and into two processes of epigenetic inheritance. The first process exploits the intrinsic asymmetry of DNA synthesis to restrain a gene conversion event to one of two sister chromatids. The second allows the formation and maintenance of a silent chromatin state. The interplay of both epigenetic events provides a striking example of dynamic chromatin choreography allowing progression into the S. pombe developmental program.
PLOS Genetics | 2011
Klavs R. Hansen; Idit Hazan; Sreenath Shanker; Stephen Watt; Janne Verhein-Hansen; Jürg Bähler; Robert A. Martienssen; Janet F. Partridge; Amikam Cohen; Geneviève Thon
Nucleosomes in heterochromatic regions bear histone modifications that distinguish them from euchromatic nucleosomes. Among those, histone H3 lysine 9 methylation (H3K9me) and hypoacetylation have been evolutionarily conserved and are found in both multicellular eukaryotes and single-cell model organisms such as fission yeast. In spite of numerous studies, the relative contributions of the various heterochromatic histone marks to the properties of heterochromatin remain largely undefined. Here, we report that silencing of the fission yeast mating-type cassettes, which are located in a well-characterized heterochromatic region, is hardly affected in cells lacking the H3K9 methyltransferase Clr4. We document the existence of a pathway parallel to H3K9me ensuring gene repression in the absence of Clr4 and identify a silencing factor central to this pathway, Clr5. We find that Clr5 controls gene expression at multiple chromosomal locations in addition to affecting the mating-type region. The histone deacetylase Clr6 acts in the same pathway as Clr5, at least for its effects in the mating-type region, and on a subset of other targets, notably a region recently found to be prone to neo-centromere formation. The genomic targets of Clr5 also include Ste11, a master regulator of sexual differentiation. Hence Clr5, like the multi-functional Atf1 transcription factor which also modulates chromatin structure in the mating-type region, controls sexual differentiation and genome integrity at several levels. Globally, our results point to histone deacetylases as prominent repressors of gene expression in fission yeast heterochromatin. These deacetylases can act in concert with, or independently of, the widely studied H3K9me mark to influence gene silencing at heterochromatic loci.
Nature Communications | 2016
Michaela J. Obersriebnig; Emil M. H. Pallesen; Kim Sneppen; Ala Trusina; Geneviève Thon
Outstanding questions in the chromatin field bear on how large heterochromatin domains are formed in space and time. Positive feedback, where histone-modifying enzymes are attracted to chromosomal regions displaying the modification they catalyse, is believed to drive the formation of these domains; however, few quantitative studies are available to assess this hypothesis. Here we quantified the de novo establishment of a naturally occurring ∼20-kb heterochromatin domain in fission yeast through single-cell analyses, measuring the kinetics of heterochromatin nucleation in a region targeted by RNAi and its subsequent expansion. We found that nucleation of heterochromatin is stochastic and can take from one to ten cell generations. Further silencing of the full region takes another one to ten generations. Quantitative modelling of the observed kinetics emphasizes the importance of local feedback, where a nucleosome-bound enzyme modifies adjacent nucleosomes, combined with a feedback where recruited enzymes can act at a distance.