Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geng Huang is active.

Publication


Featured researches published by Geng Huang.


Virus Research | 2013

Domestic cats and dogs are susceptible to H9N2 avian influenza virus

Kun Zhang; Zhaowei Zhang; Zhijun Yu; Lin Li; Kaihui Cheng; Tiecheng Wang; Geng Huang; Songtao Yang; Yongkun Zhao; Na Feng; Jun Fu; Chuan Qin; Yuwei Gao; Xianzhu Xia

Replication and transmission of avian influenza virus (AIV) in domestic dogs and cats may pose a risk to humans. The susceptibility of cats and dogs to H9N2 influenza virus was evaluated by intranasally or orally inoculating animals with an H9N2 influenza virus. Cats had recoverable virus in respiratory tissues and the olfactory bulb three days post-inoculation and shed H9N2 virus into nasal washes and pharyngeal swabs from day 2 through day 10 post-inoculation. Virus was recovered from respiratory tissues of dogs three days post-inoculation, but was not detected in nasal washes or pharyngeal swabs. While no virus shedding or replication was detected in cats or dogs following consumption of H9N2-infected chicks, one of two cats and one of two dogs seroconverted. Two of three naïve contact cats seroconverted following co-housing with cats that were intranasally inoculated with H9N2 virus, whereas none of the three naïve contact dogs seroconverted. Our results demonstrate that H9N2 AIV can infect domestic cats and dogs via the upper respiratory tract and indicate that cats are more susceptible than dogs to H9N2 AIV. These findings suggest that domestic dogs and cats may serve as host species contributing to the adaptation of H9N2 viruses in mammals.


Viruses | 2013

Molecular characterization and phylogenetic analysis of new variants of the porcine epidemic diarrhea virus in Gansu, China in 2012.

Yufei Tian; Zhijun Yu; Kaihui Cheng; Yuxiu Liu; Jing Huang; Yue Xin; Yuanguo Li; Shengtao Fan; Tiecheng Wang; Geng Huang; Na Feng; Zhenguo Yang; Songtao Yang; Yuwei Gao; Xianzhu Xia

Between January 2012 and March 2012, the infection rates of porcine epidemic diarrhea virus (PEDV) increased substantially in vaccinated swine herds in many porcine farms in Gansu Province, China. The spike (S) glycoprotein is an important determinant for PEDV biological properties. To determine the distribution profile of PEDV outbreak strains, we sequenced the full-length S gene of five samples from two farms where animals exhibited severe diarrhea and high mortality rates. Five new PEDV variants were identified, and the molecular diversity, phylogenetic relationships, and antigenicity analysis of Gansu field samples with other PEDV reference strains were investigated. A series of insertions, deletions, and mutations in the S gene was found in five PEDV variants compared with classical and vaccine strains. These mutations may provide stronger pathogenicity and antigenicity to the new PEDV variants that influenced the effectiveness of the CV777-based vaccine. Our results suggest that these new PEDV variant strains in Gansu Province might be from South Korean or South China, and the effectiveness of the CV777-based vaccine needs to be evaluated.


PLOS ONE | 2012

A Novel Recombinant Peste des Petits Ruminants-Canine Adenovirus Vaccine Elicits Long-Lasting Neutralizing Antibody Response against PPR in Goats

Junling Qin; Hainan Huang; Yang Ruan; Xiaoqiang Hou; Songtao Yang; Chengyu Wang; Geng Huang; Tiecheng Wang; Na Feng; Yuwei Gao; Xianzhu Xia

Background Peste des petits ruminants (PPR) is a highly contagious infectious disease of goats, sheep and small wild ruminant species with high morbidity and mortality rates. The Peste des petits ruminants virus (PPRV) expresses a hemagglutinin (H) glycoprotein on its outer envelope that is crucial for viral attachment to host cells and represents a key antigen for inducing the host immune response. Methodology/Principal Findings To determine whether H can be exploited to generate an effective PPRV vaccine, a replication-competent recombinant canine adenovirus type-2 (CAV-2) expressing the H gene of PPRV (China/Tibet strain) was constructed by the in vitro ligation method. The H expression cassette, including the human cytomegalovirus (hCMV) promoter/enhancer and the BGH early mRNA polyadenylation signal, was inserted into the SspI site of the E3 region, which is not essential for proliferation of CAV-2. Infectious recombinant rCAV-2-PPRV-H virus was generated in transfected MDCK cells and used to immunize goats. All vaccinated animals produced antibodies upon primary injection that were effective in neutralizing PPRV in vitro. Higher antibody titer was obtained following booster inoculation, and the antibody was detectable in goats for at least seven months. No serious recombinant virus-related adverse effect was observed in immunized animals and no adenovirus could be isolated from the urine or feces of vaccinated animals. Results showed that the recombinant virus was safe and could stimulate a long-lasting immune response in goats. Conclusions/Significance This strategy not only provides an effective PPR vaccine candidate for goats but may be a valuable mean by which to differentiate infected from vaccinated animals (the so-called DIVA approach).


Journal of Virological Methods | 2010

A rapid immunochromatographic test strip for detecting rabies virus antibody

Hualei Wang; Na Feng; Songtao Yang; Chengyu Wang; Tiecheng Wang; Yuwei Gao; Jianqing Su; Xuexing Zheng; Xiaoqiang Hou; Hainan Huang; Ruimei Yang; Xiaohuan Zou; Geng Huang; Xianzhu Xia

Abstract An immunochromatographic test strip (ICTS) for detecting antibodies to rabies virus was developed, using colloidal gold particles labeled with rabies virus glycoprotein as the tracer. The assay was evaluated using sera from dogs immunized with various commercial rabies vaccines, or from dogs in the clinics and sera from dogs immunized with vaccines against pathogens other than rabies virus, and negative sera from a wide variety of animal sources, including dogs, mice, and cats which had never been vaccinated. The ICTS was found to be highly specific for antibodies against rabies virus, with a detection limit of 0.5IU/ml as measured by the fluorescent antibody virus neutralization (FAVN) test. Compared with the FAVN test, the specificity and sensitivity of ICTS were 98.2% and 90.4%, respectively. There was an excellent agreement between results obtained by the ICTS and FAVN tests (kappa=0.888). Strips stored at 4°C in a plastic bag with a desiccant retained their specificity and sensitivity for at least 15 months, and strips stored at ambient temperature remained stable for 12 months. The immunochromatographic test strip may therefore be useful for clinical laboratories lacking specialized equipment and for diagnosis in the field for rapid detection of rabies virus-specific antibodies.


Archives of Virology | 2013

Experimental infection of non-human primates with avian influenza virus (H9N2).

Kun Zhang; Weiwei Xu; Zhaowei Zhang; Tiecheng Wang; Xiaoyu Sang; Kaihui Cheng; Zhijun Yu; Xuexing Zheng; Huale Wang; Yongkun Zhao; Geng Huang; Songtao Yang; Chuan Qin; Yuwei Gao; Xianzhu Xia

Several cases of humans infected with the H9N2 avian influenza virus (AIV) have been described since 1999; however, the infectivity and pathogenicity of H9N2 in humans is not well defined. A non-human primate model in rhesus macaques was developed to study H9N2 virus infections as a means of better understanding the pathogenesis and virulence of this virus, in addition to testing antiviral drugs. Rhesus macaques inoculated with H9N2 AIV presented with biphasic fever and viral pneumonia. H9N2 was recovered from nasal washes and pharyngeal samples up to days 7-9 postinfection, followed by an increase in HI (hemagglutination inhibition) antibody titers. Tissue tropism and immunohistochemistry indicated that H9N2 AIV replicated in the upper respiratory tract (turbinate, trachea, and bronchus) and in all lobes of the lung. Our data suggest that rhesus macaques are a suitable animal model to study H9N2 influenza virus infections, particularly in the context of viral evolution and pathogenicity.


Scientific Reports | 2016

Treatment with hyperimmune equine immunoglobulin or immunoglobulin fragments completely protects rodents from Ebola virus infection

Xuexing Zheng; Gary Wong; Yongkun Zhao; Hualei Wang; Shihua He; Yuhai Bi; Weijin Chen; Hongli Jin; Weiwei Gai; Di Chu; Zengguo Cao; Chong Wang; Quanshui Fan; Hang Chi; Yuwei Gao; Tiecheng Wang; Na Feng; Feihu Yan; Geng Huang; Ying Zheng; Nan Li; Yuetao Li; Jun Qian; Yong Zou; Gary P. Kobinger; George F. Gao; Xiangguo Qiu; Songtao Yang; Xianzhu Xia

Recent successes with monoclonal antibody cocktails ZMappTM and MIL77 against Ebola virus (EBOV) infections have reignited interest in antibody-based therapeutics. Since the production process for monoclonal antibodies can be prolonged and costly, alternative treatments should be investigated. We produced purified equine antisera from horses hyperimmunized with EBOV virus-like particles, and tested the post-exposure efficacy of the antisera in a mouse model of infection. BALB/c mice were given up to 2 mg of purified equine antisera per animal, at 30 minutes, 1 or 2 days post-infection (dpi), in which all animals survived. To decrease the possibility of serum sickness, the equine antisera was digested with pepsin to generate F(ab′)2 fragments, with in vitro neutralizing activity comparable to whole immunoglobulin. Full protection was achieved with when treatment was initiated at 1 dpi, but the suboptimal protection observed with the 30 minute and 2 dpi groups demonstrate that in addition to virus neutralization, other Fc-dependent antibody mechanisms may also contribute to survival. Guinea pigs given 20 mg of antisera or F(ab′)2 at or starting at 1 or 2 dpi were also fully protected from EBOV infection. These results justify future efficacy studies for purified equine products in NHPs.


Virology | 2015

Adaptive amino acid substitutions enhance the virulence of a reassortant H7N1 avian influenza virus isolated from wild waterfowl in mice

Zhijun Yu; Weiyang Sun; Xue Li; Qiang Chen; Hongliang Chai; Xiaolong Gao; Jiao Guo; Kun Zhang; Tiecheng Wang; Na Feng; Xuexing Zheng; Hualei Wang; Yongkun Zhao; Chuan Qin; Geng Huang; Songtao Yang; Yuping Hua; Xuemei Zhang; Yuwei Gao; Xianzhu Xia

H7 avian influenza viruses (AIVs) have caused a number of human infections, highlighting the pandemic potential of them. However, the factors that promote their replication in mammals remain poorly understood. Here, we generated mouse-adapted variants of a reassortant H7N1 virus to identify adaptive changes that confer enhanced virulence in mammals. The mouse lethal doses (MLD50) of the variants were reduced >10,000-fold compared to the parental virus. Adapted variants displayed enhanced replication kinetics in vitro and vivo, and were capable of replicating in multiple organs. Analysis of the variant virus genomes revealed amino acid changes in the PB2 (E627K), HA (H3 numbering; E114K, G205E, and G218E), and NA (S350N) proteins. Notably, some amino acid changes have been identified in natural H7 isolates. Our results implicate a number of amino acid substitutions that collectively enhance the ability of a wild bird-origin H7N1 AIV to replicate and cause severe disease in mice.


Veterinary Microbiology | 2015

Adaptive amino acid substitutions enhance the virulence of an H7N7 avian influenza virus isolated from wild waterfowl in mice

Qiang Chen; Zhijun Yu; Weiyang Sun; Xue Li; Hongliang Chai; Xiaolong Gao; Jiao Guo; Kun Zhang; Na Feng; Xuexing Zheng; Hualei Wang; Yongkun Zhao; Chuan Qin; Geng Huang; Songtao Yang; Jun Qian; Yuwei Gao; Xianzhu Xia; Tiecheng Wang; Yuping Hua

Although H7N7 AIVs primarily circulate in wild waterfowl, documented cases of human infection with H7N7 viruses suggest they may pose a pandemic threat. Here, we generated mouse-adapted variants of a wild waterfowl-origin H7N7 virus to identify adaptive changes that confer enhanced virulence in mammals. The mouse lethal doses (MLD50) of the adapted variants were reduced >5000-fold compared to the parental virus. Mouse-adapted variants viruses displayed enhanced replication in vitro and in vivo, and acquired the ability to replicate in extrapulmonary tissues. These observations suggest that enhanced growth characteristics and modified cell tropism may increase the virulence of H7N7 AIVs in mice. Genomic analysis of the adapted variant viruses revealed amino acid changes in the PB2 (E627K), PB1 (R118I), PA (L550M), HA (G214R), and NA (S372N) proteins. Our results suggest that these amino acid substitutions collaboratively enhance the ability of H7N7 virus to replicate and cause severe disease in mammals.


Scientific Reports | 2015

Adaptation of H9N2 AIV in guinea pigs enables efficient transmission by direct contact and inefficient transmission by respiratory droplets.

Xiaoyu Sang; Airong Wang; Jie Ding; Huihui Kong; Xiaolong Gao; Lin Li; Tongjie Chai; Yuanguo Li; Kun Zhang; Chengyu Wang; Zhonghai Wan; Geng Huang; Tiecheng Wang; Na Feng; Xuexing Zheng; Hualei Wang; Yongkun Zhao; Songtao Yang; Jun Qian; Guixue Hu; Yuwei Gao; Xianzhu Xia

H9N2 avian influenza viruses circulate worldwide in poultry and have sporadically infected humans, raising concern whether H9N2 viruses have pandemic potential. Here, we use a guinea pig model to examine whether serial passage results in adaptive viral changes that confer a transmissible phenotype to a wild-type H9N2 virus. After nine serial passages of an H9N2 virus through guinea pigs, productive transmission by direct contact occurred in 2/3 guinea pig pairs. The efficiency of transmission by direct contact increased following the fifteenth passage and occurred in 3/3 guinea pig pairs. In contrast, airborne transmission of the passaged virus was less efficient and occurred in 1/6 guinea pig pairs and 0/6 ferret pairs after the fifteenth passage. Three amino acid substitutions, HA1-Q227P, HA2-D46E, and NP-E434K, were sufficient for contact transmission in guinea pigs (2/3 pairs). The two HA amino acid substitutions enhanced receptor binding to α2,3-linked sialic acid receptors. Additionally, the HA2-D46E substitution increased virus thermostability whereas the NP-E434K mutation enhanced viral RNA polymerase activity in vitro. Our findings suggest that adaptive changes that enhance viral receptor binding, thermostability, and replicative capacity in mammalian cells can collectively enhance the transmissibility of H9N2 AIVs by direct contact in the guinea pig model.


Virology Journal | 2012

Infection with street strain rabies virus induces modulation of the microRNA profile of the mouse brain

Pingsen Zhao; Lili Zhao; Kun Zhang; Hao Feng; Hualei Wang; Tiecheng Wang; Tao Xu; Na Feng; Chengyu Wang; Yuwei Gao; Geng Huang; Chuan Qin; Songtao Yang; Xianzhu Xia

BackgroundRabies virus (RABV) causes a fatal infection of the central nervous systems (CNS) of warm-blooded animals. Once the clinical symptoms develop, rabies is almost invariably fatal. The mechanism of RABV pathogenesis remains poorly understood. Recent studies have shown that microRNA (miRNA) plays an important role in the pathogenesis of viral infections. Our recent findings have revealed that infection with laboratory-fixed rabies virus strain can induce modulation of the microRNA profile of mouse brains. However, no previous report has evaluated the miRNA expression profile of mouse brains infected with RABV street strain.ResultsThe results of microarray analysis show that miRNA expression becomes modulated in the brains of mice infected with street RABV. Quantitative real-time PCR assay of the differentially expressed miRNAs confirmed the results of microarray assay. Functional analysis showed the differentially expressed miRNAs to be involved in many immune-related signaling pathways, such as the Jak-STAT signaling pathway, the MAPK signaling pathway, cytokine-cytokine receptor interactions, and Fc gamma R-mediated phagocytosis. The predicted expression levels of the target genes of these modulated miRNAs were found to be correlated with gene expression as measured by DNA microarray and qRT-PCR.ConclusionRABV causes significant changes in the miRNA expression profiles of infected mouse brains. Predicted target genes of the differentially expression miRNAs are associated with host immune response, which may provide important information for investigation of RABV pathogenesis and therapeutic method.

Collaboration


Dive into the Geng Huang's collaboration.

Top Co-Authors

Avatar

Songtao Yang

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Tiecheng Wang

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Xianzhu Xia

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Yuwei Gao

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Na Feng

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Chengyu Wang

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Kun Zhang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Xuexing Zheng

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Yongkun Zhao

Academy of Military Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Hualei Wang

Academy of Military Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge