Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Genlin Ji is active.

Publication


Featured researches published by Genlin Ji.


Mathematical Problems in Engineering | 2015

A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

Yudong Zhang; Shuihua Wang; Genlin Ji

Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms.


Knowledge Based Systems | 2014

Binary PSO with mutation operator for feature selection using decision tree applied to spam detection

Yudong Zhang; Shuihua Wang; Preetha Phillips; Genlin Ji

In this paper, we proposed a novel spam detection method that focused on reducing the false positive error of mislabeling nonspam as spam. First, we used the wrapper-based feature selection method to extract crucial features. Second, the decision tree was chosen as the classifier model with C4.5 as the training algorithm. Third, the cost matrix was introduced to give different weights to two error types, i.e., the false positive and the false negative errors. We define the weight parameter as a to adjust the relative importance of the two error types. Fourth, K-fold cross validation was employed to reduce out-of-sample error. Finally, the binary PSO with mutation operator (MBPSO) was used as the subset search strategy. Our experimental dataset contains 6000 emails, which were collected during the year of 2012. We conducted a Kolmogorov–Smirnov hypothesis test on the capital-run-length related features and found that all the p values were less than 0.001. Afterwards, we found a = 7 was the most appropriate in our model. Among seven meta-heuristic algorithms, we demonstrated the MBPSO is superior to GA, RSA, PSO, and BPSO in terms of classification performance. The sensitivity, specificity, and accuracy of the decision tree with feature selection by MBPSO were 91.02%, 97.51%, and 94.27%, respectively. We also compared the MBPSO with conventional feature selection methods such as SFS and SBS. The results showed that the MBPSO performs better than SFS and SBS. We also demonstrated that wrappers are more effective than filters with regard to classification performance indexes. It was clearly shown that the proposed method is effective, and it can reduce the false positive error without compromising the sensitivity and accuracy values.


Entropy | 2015

Preclinical Diagnosis of Magnetic Resonance (MR) Brain Images via Discrete Wavelet Packet Transform with Tsallis Entropy and Generalized Eigenvalue Proximal Support Vector Machine (GEPSVM)

Yudong Zhang; Zhengchao Dong; Shuihua Wang; Genlin Ji; Jiquan Yang

Background: Developing an accurate computer-aided diagnosis (CAD) system of MR brain images is essential for medical interpretation and analysis. In this study, we propose a novel automatic CAD system to distinguish abnormal brains from normal brains in MRI scanning. Methods: The proposed method simplifies the task to a binary classification problem. We used discrete wavelet packet transform (DWPT) to extract wavelet packet coefficients from MR brain images. Next, Shannon entropy (SE) and Tsallis entropy (TE) were harnessed to obtain entropy features from DWPT coefficients. Finally, generalized eigenvalue proximate support vector machine (GEPSVM), and GEPSVM with radial basis function (RBF) kernel, were employed as classifier. We tested the four proposed diagnosis methods (DWPT + SE + GEPSVM, DWPT + TE + GEPSVM, DWPT + SE + GEPSVM + RBF, and DWPT + TE + GEPSVM + RBF) on three benchmark datasets of Dataset-66, Dataset-160, and Dataset-255. Results: The 10 repetition of K-fold stratified cross validation results showed the proposed DWPT + TE + GEPSVM + RBF method excelled not only other three proposed classifiers but also existing state-of-the-art methods in terms of classification accuracy. In addition, the DWPT + TE + GEPSVM + RBF method achieved accuracy of 100%, 100%, and 99.53% on Dataset-66, Dataset-160, and Dataset-255, respectively. For Dataset-255, the offline learning cost 8.4430s and online prediction cost merely 0.1059s. Conclusions: We have proved the effectiveness of the proposed method, which achieved nearly 100% accuracy over three benchmark datasets.


Frontiers in Computational Neuroscience | 2015

Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning

Yudong Zhang; Zhengchao Dong; Preetha Phillips; Shuihua Wang; Genlin Ji; Jiquan Yang; Ti-Fei Yuan

Purpose: Early diagnosis or detection of Alzheimers disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis (CAD) was not widely used, and the classification performance did not reach the standard of practical use. We proposed a novel CAD system for MR brain images based on eigenbrains and machine learning with two goals: accurate detection of both AD subjects and AD-related brain regions. Method: First, we used maximum inter-class variance (ICV) to select key slices from 3D volumetric data. Second, we generated an eigenbrain set for each subject. Third, the most important eigenbrain (MIE) was obtained by Welchs t-test (WTT). Finally, kernel support-vector-machines with different kernels that were trained by particle swarm optimization, were used to make an accurate prediction of AD subjects. Coefficients of MIE with values higher than 0.98 quantile were highlighted to obtain the discriminant regions that distinguish AD from NC. Results: The experiments showed that the proposed method can predict AD subjects with a competitive performance with existing methods, especially the accuracy of the polynomial kernel (92.36 ± 0.94) was better than the linear kernel of 91.47 ± 1.02 and the radial basis function (RBF) kernel of 86.71 ± 1.93. The proposed eigenbrain-based CAD system detected 30 AD-related brain regions (Anterior Cingulate, Caudate Nucleus, Cerebellum, Cingulate Gyrus, Claustrum, Inferior Frontal Gyrus, Inferior Parietal Lobule, Insula, Lateral Ventricle, Lentiform Nucleus, Lingual Gyrus, Medial Frontal Gyrus, Middle Frontal Gyrus, Middle Occipital Gyrus, Middle Temporal Gyrus, Paracentral Lobule, Parahippocampal Gyrus, Postcentral Gyrus, Posterial Cingulate, Precentral Gyrus, Precuneus, Subcallosal Gyrus, Sub-Gyral, Superior Frontal Gyrus, Superior Parietal Lobule, Superior Temporal Gyrus, Supramarginal Gyrus, Thalamus, Transverse Temporal Gyrus, and Uncus). The results were coherent with existing literatures. Conclusion: The eigenbrain method was effective in AD subject prediction and discriminant brain-region detection in MRI scanning.


Multimedia Tools and Applications | 2016

Automated classification of brain images using wavelet-energy and biogeography-based optimization

Gelan Yang; Yudong Zhang; Jiquan Yang; Genlin Ji; Zhengchao Dong; Shuihua Wang; Chunmei Feng; Qiong Wang

It is very important to early detect abnormal brains, in order to save social and hospital resources. The wavelet-energy was a successful feature descriptor that achieved excellent performances in various applications; hence, we proposed a novel wavelet-energy based approach for automated classification of MR brain images as normal or abnormal. SVM was used as the classifier, and biogeography-based optimization (BBO) was introduced to optimize the weights of the SVM. The results based on a 5 × 5-fold cross validation showed the performance of the proposed BBO-KSVM was superior to BP-NN, KSVM, and PSO-KSVM in terms of sensitivity and accuracy. The study offered a new means to detect abnormal brains with excellent performance.


Entropy | 2015

Fruit Classification by Wavelet-Entropy and Feedforward Neural Network Trained by Fitness-Scaled Chaotic ABC and Biogeography-Based Optimization

Shuihua Wang; Yudong Zhang; Genlin Ji; Jiquan Yang; Jianguo Wu; Ling Wei

Fruit classification is quite difficult because of the various categories and similar shapes and features of fruit. In this work, we proposed two novel machine-learning based classification methods. The developed system consists of wavelet entropy (WE), principal component analysis (PCA), feedforward neural network (FNN) trained by fitness-scaled chaotic artificial bee colony (FSCABC) and biogeography-based optimization (BBO), respectively. The K-fold stratified cross validation (SCV) was utilized for statistical analysis. The classification performance for 1653 fruit images from 18 categories showed that the proposed “WE + PCA + FSCABC-FNN” and “WE + PCA + BBO-FNN” methods achieve the same accuracy of 89.5%, higher than state-of-the-art approaches: “(CH + MP + US) + PCA + GA-FNN ” of 84.8%, “(CH + MP + US) + PCA + PSO-FNN” of 87.9%, “(CH + MP + US) + PCA + ABC-FNN” of 85.4%, “(CH + MP + US) + PCA + kSVM” of 88.2%, and “(CH + MP + US) + PCA + FSCABC-FNN” of 89.1%. Besides, our methods used only 12 features, less than the number of features used by other methods. Therefore, the proposed methods are effective for fruit classification.


Progress in Electromagnetics Research-pier | 2015

Pathological Brain Detection in Magnetic Resonance Imaging Scanning by Wavelet Entropy and Hybridization of Biogeography-Based Optimization and Particle Swarm Optimization

Yudong Zhang; Shuihua Wang; Zhengchao Dong; Preetha Phillip; Genlin Ji; Jiquan Yang

Background) We proposed a novel computer-aided diagnosis (CAD) system based on the hybridization of biogeography-based optimization (BBO) and particle swarm optimization (PSO), with the goal of detecting pathological brains in MRI scanning. (Method) The proposed method used wavelet entropy (WE) to extract features from MR brain images, followed by feed-forward neural network (FNN) with training method of a Hybridization of BBO and PSO (HBP), which combined the exploration ability of BBO and exploitation ability of PSO. (Results) The 10 repetition of k-fold cross validation result showed that the proposed HBP outperformed existing FNN training methods and that the proposed WE + HBP-FNN outperformed fourteen state-of-the-art CAD systems of MR brain classification in terms of classification accuracy. The proposed method achieved accuracy of 100%, 100%, and 99.49% over Dataset-66, Dataset-160, and Dataset-255, respectively. The offline learning cost 208.2510 s for Dataset-255, and merely 0.053s for online prediction. (Conclusion) The proposed WE + HBP-FNN method achieves nearly perfect detection pathological brains in MRI scanning.


The Scientific World Journal | 2013

An MR Brain Images Classifier System via Particle Swarm Optimization and Kernel Support Vector Machine

Yudong Zhang; Shuihua Wang; Genlin Ji; Zhengchao Dong

Automated abnormal brain detection is extremely of importance for clinical diagnosis. Over last decades numerous methods had been presented. In this paper, we proposed a novel hybrid system to classify a given MR brain image as either normal or abnormal. The proposed method first employed digital wavelet transform to extract features then used principal component analysis (PCA) to reduce the feature space. Afterwards, we constructed a kernel support vector machine (KSVM) with RBF kernel, using particle swarm optimization (PSO) to optimize the parameters C and σ. Fivefold cross-validation was utilized to avoid overfitting. In the experimental procedure, we created a 90 images dataset brain downloaded from Harvard Medical School website. The abnormal brain MR images consist of the following diseases: glioma, metastatic adenocarcinoma, metastatic bronchogenic carcinoma, meningioma, sarcoma, Alzheimer, Huntington, motor neuron disease, cerebral calcinosis, Picks disease, Alzheimer plus visual agnosia, multiple sclerosis, AIDS dementia, Lyme encephalopathy, herpes encephalitis, Creutzfeld-Jakob disease, and cerebral toxoplasmosis. The 5-folded cross-validation classification results showed that our method achieved 97.78% classification accuracy, higher than 86.22% by BP-NN and 91.33% by RBF-NN. For the parameter selection, we compared PSO with those of random selection method. The results showed that the PSO is more effective to build optimal KSVM.


Information Sciences | 2015

Exponential Wavelet Iterative Shrinkage Thresholding Algorithm for compressed sensing magnetic resonance imaging

Yudong Zhang; Zhengchao Dong; Preetha Phillips; Shuihua Wang; Genlin Ji; Jiquan Yang

It is beneficial for both hospitals and patients to accelerate MRI scanning. Recently, a new fast MRI technique based on CS was proposed. However, the reconstruction quality and computation time of CS-MRI did not meet the standard of clinical use. Therefore, we proposed a novel algorithm based on three successful components: the sparsity of EWT, the rapidness of FISTA, and the excellent tuning in SISTA. The proposed method was dubbed Exponential Wavelet Iterative Shrinkage/Threshold Algorithm (EWISTA). Experiments over four kinds of MR images (brain, ankle, knee, and ADHD) indicated that the proposed EWISTA showed better reconstruction performance than the state-of-the-art algorithms such as FCSA, ISTA, FISTA, SISTA, and EWT-ISTA. Moreover, EWISTA was faster than ISTA and EWT-ISTA, but slightly slower than FCSA, FISTA and SISTA.


international conference on bioinformatics and biomedical engineering | 2015

Detection of Pathological Brain in MRI Scanning Based on Wavelet-Entropy and Naive Bayes Classifier

Xingxing Zhou; Shuihua Wang; Wei Xu; Genlin Ji; Preetha Phillips; Ping Sun; Yudong Zhang

An accurate diagnosis is important for the medical treatment of patients suffered from brain disease. Nuclear magnetic resonance images are commonly used by technicians to assist the pre-clinical diagnosis, rating them by visual evaluations. The classification of NMR images of normal and pathological brains poses a challenge from technological point of view, since NMR imaging generates a large information set that reflects the conditions of the brain. In this work, we present a computer assisted diagnosis method based on a wavelet-entropy (In this paper 2D-discrete wavelet transform has been used, in that it can extract more information) of the feature space approach and a Naive Bayes classifier classification method for improving the brain diagnosis accuracy by means of NMR images. The most relevant image feature is selected as the wavelet entropy, which is used to train a Naive Bayes classifier. The results over 64 images show that the sensitivity of the classifier is as high as 94.50%, the specificity 91.70%, the overall accuracy 92.60%. It is easily observed from the data that the proposed classifier can detect abnormal brains from normal controls within excellent performance, which is competitive with latest existing methods.

Collaboration


Dive into the Genlin Ji's collaboration.

Top Co-Authors

Avatar

Yudong Zhang

Nanjing Normal University

View shared research outputs
Top Co-Authors

Avatar

Shuihua Wang

Nanjing Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiquan Yang

Nanjing Normal University

View shared research outputs
Top Co-Authors

Avatar

Preetha Phillips

West Virginia School of Osteopathic Medicine

View shared research outputs
Top Co-Authors

Avatar

Xingxing Zhou

Nanjing Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ling Wei

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Ping Sun

City College of New York

View shared research outputs
Researchain Logo
Decentralizing Knowledge