Gennady A. Buznikov
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gennady A. Buznikov.
Cell and Tissue Research | 2001
Gennady A. Buznikov; Wayne H. Lambert; Jean M. Lauder
Abstract. The problem of pre-nervous neurotransmitter systems arose from studies carried out on different groups of invertebrates and vertebrates in the late 1950s to early 1960s. These investigations were motivated by an hypothesis formulated by K. S. Koshtoyants concerning the similarity between pre-nervous control processes and neuronal functions. Here, we review new data related to the embryogenetic and morphogenetic functions of serotonin (5-HT) and 5-HT-like substances in early embryos of sea urchins, mouse, and other species. Accumulating evidence across animal phyla indicates that 5-HT, together with other classical neurotransmitters, regulates basic developmental processes, including cell proliferation, migration, differentiation, and morphogenesis. Future investigations of cellular and molecular mechanisms underlying phylogenetically old functions of neurotransmitters could provide new insights into the evolutionary emergence of the vertebrate nervous system.
Cellular and Molecular Neurobiology | 1996
Gennady A. Buznikov; Yuri B. Shmukler; Jean M. Lauder
Summary1.Classical neurotransmitters (such as acetylcholine, biogenic amines, and GABA) are functionally active througout ontogenesis.2.Based on accumulated evidence, reviewed herein, we present an hypothetical scheme describing developmental changes in this functional activity, from the stage of maturing oocytes through neuronal differentiation. This scheme reflects not only the spatio-temporal sequence of these changes, but also the genesis of neurotransmitter functions, from “protosynapses” in oocytes and cleaving embryos to the development of functional neuronal synapses.3.Thus, it appears that neurotransmitters participate in various forms of intra- and intercellular signalling throughout all stages of ontogenesis.
Developmental Neuroscience | 2006
Michael Levin; Gennady A. Buznikov; Jean M. Lauder
Serotonin is a clinically important neurotransmitter regulating diverse aspects of cognitive function, sleep, mood, and appetite. Increasingly, it is becoming appreciated that serotonin signaling among non-neuronal cells is a novel patterning mechanism existing throughout diverse phyla. Here, we review the evidence implicating serotonergic signaling in embryonic morphogenesis, including gastrulation, craniofacial and bone patterning, and the generation of left-right asymmetry. We propose two models suggesting movement of neurotransmitter molecules as a novel mechanism for how bioelectrical events may couple to downstream signaling cascades and gene activation networks. The discovery of serotonin-dependent patterning events occurring long before the development of the nervous system opens exciting new avenues for future research in evolutionary, developmental, and clinical biology.
Neurochemical Research | 1981
Gennady A. Buznikov; Yu. B. Shmukler
Evidence is presented in support of the working hypothesis that “prenervous” neurotransmitters directly participate in cell-cell interactions occurring during the first several cleavage divisions of sea urchin embryos, a function which may occur during the early development of higher animals as well. This intercellular signaling could be a link in the evolutionary progression from the use of these substances as intracellular regulators to their participation in cell-cell interactions occurring during synaptic transmission.
Neurochemical Research | 2005
Gennady A. Buznikov; Robert E. Peterson; Lyudmila A. Nikitina; V. V. Bezuglov; Jean M. Lauder
Forty serotonin-related neurochemicals were tested on embryos and larvae of Lytechinus variegatus and other sea urchin species. Some of these substances (agonists of 5-HT1 receptors, antagonists of 5-HT2, 5-HT3 or 5-HT4 receptors, and inhibitors of the serotonin transporter, SERT) perturbed post-blastulation development, eliciting changes in embryonic/larval phenotypes typical for each class of receptor ligand. These developmental malformations were prevented completely or partially by serotonin (5-HT) or 5-HT analogs (5-HTQ, AA-5-HT), providing evidence for the putative localization of cellular targets. Immunoreactive 5-HT, 5-HT receptors and SERT were found in pre-nervous embryos and larvae of both L. variegatus and Strongylocentrotus droebachiensis. During gastrulation, these components of the serotonergic system were localized to the archenteron (primary gut), mesenchyme-like cells, and often the apical ectoderm. These results provide evidence that pre-nervous 5-HT may regulate early events of sea urchin embryogenesis, mediated by 5-HT receptors or the 5-HT transporter.
Brain Research Bulletin | 2007
Gennady A. Buznikov; Lyudmila A. Nikitina; Ljubiša M. Rakić; Ivan Milošević; V. V. Bezuglov; Jean M. Lauder; Theodore A. Slotkin
Lower organisms show promise for the screening of neurotoxicants that might target mammalian brain development. Sea urchins use neurotransmitters as embryonic growth regulatory signals, so that adverse effects on neural substrates for mammalian brain development can be studied in this simple organism. We compared the effects of the organophosphate insecticide, chlorpyrifos in sea urchin embryos with those of the monoamine depleter, reserpine, so as to investigate multiple neurotransmitter mechanisms involved in developmental toxicity and to evaluate different therapeutic interventions corresponding to each neurotransmitter system. Whereas reserpine interfered with all stages of embryonic development, the effects of chlorpyrifos did not emerge until the mid-blastula stage. After that point, the effects of the two agents were similar. Treatment with membrane permeable analogs of the monoamine neurotransmitters, serotonin and dopamine, prevented the adverse effects of either chlorpyrifos or reserpine, despite the fact that chlorpyrifos works simultaneously through actions on acetylcholine, monoamines and other neurotransmitter pathways. This suggests that different neurotransmitters, converging on the same downstream signaling events, could work together or in parallel to offset the developmental disruption caused by exposure to disparate agents. We tested this hypothesis by evaluating membrane permeable analogs of acetylcholine and cannabinoids, both of which proved effective against chlorpyrifos- or reserpine-induced teratogenesis. Invertebrate test systems can provide both a screening procedure for mammalian neuroteratogenesis and may uncover novel mechanisms underlying developmental vulnerability as well as possible therapeutic approaches to prevent teratogenesis.
Neuroscience and Behavioral Physiology | 1999
Gennady A. Buznikov; Yu. B. Shmukler; J. M. Lauder
The classical neurotransmitters (acetylcholine and biogenic monoamines) are multifunctional substances involved in intra- and intercellular signaling at all stages of ontogenesis in multicellular animals. A cyclical scheme is proposed to describe age-related changes in neuro-transmitter functions at different stages of development from oocyte maturation to neuron formation. This may reflect not only the temporospatial organization of neurotransmitter processes, but also the origin of the functions of acetylcholine and biogenic monoamines from the protosynapses of the cleaved embryo to neuronal synapses.
Cell and Tissue Research | 2003
Gennady A. Buznikov; Lyudmila A. Nikitina; Elena E. Voronezhskaya; V. V. Bezuglov; A. O. Dennis Willows; Leonid P. Nezlin
A classical neurotransmitter serotonin (5-HT) was detected immunochemically using laser scanning microscopy at the early stages of Tritonia diomedea development. At the one- to eight-cell stages, immunolabeling suggested the presence of 5-HT in the cytoplasm close to the animal pole. At the morula and blastula stages, a group of micromeres at the animal pole showed immunoreactivity. At the gastrula stage no immunoreactive cells were detected, but they arose again at the early veliger stage. Antagonists of 5-HT2 receptors, ritanserin and cyproheptadine, as well as lipophilic derivatives of dopamine blocked cleavage divisions or distorted their normal pattern. These effects were prevented by 5-HT and its highly lipophilic derivates, serotoninamides of polyenoic fatty acids, but not by the hydrophilic (quaternary) analog of 5-HT, 5-HTQ. The results confirm our earlier suggestion that endogenous 5-HT in pre-nervous embryos acts as a regulator of cleavage divisions in nudibranch molluscs.
Current protocols in immunology | 2003
Gennady A. Buznikov; Theodore A. Slotkin; Jean M. Lauder
Sea urchin embryos and larvae provide an inexpensive high‐throughput system for determining developmental actions of neuropharmacologic agents or environmental neurotoxins in both applied and basic biologic contexts. The use of this system for the testing of chlorpyrifos, 1‐nicotine, lipophilic amides of choline, and ritanserin is described in detail.
Russian Journal of Developmental Biology | 2007
Gennady A. Buznikov
Our knowledge about the preneural neurotransmitter systems and their functions were based on the old pharmacological and biochemical data that have recently been confirmed and substantially supplemented. Specific components of the preneural serotoninergic and endocannabinoid systems were identified in developing echinoderm embryos using immunocytochemistry, Western immunoelectroblotting, and HPLC-mass spectroscopy. These data were corroborated by the results of pharmacological experiments: it was found that some ligands of serotonin receptors, as well as the agonist of cannabinoid receptors anandamide induced the appearance of abnormal embryonic phenotypes, whose expression depended on the ligand-teratogen concentration. Their appearance was prevented, correspondingly, by serotonin and its lipophilic (or hydrophilic) analogs and antagonists of cannabinoid (CB1CB2)-receptors.