Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gennady Dvoryanchikov is active.

Publication


Featured researches published by Gennady Dvoryanchikov.


Proceedings of the National Academy of Sciences of the United States of America | 2007

The role of pannexin 1 hemichannels in ATP release and cell–cell communication in mouse taste buds

Yi Jen Huang; Yutaka Maruyama; Gennady Dvoryanchikov; Elizabeth Pereira; Nirupa Chaudhari; Stephen D. Roper

ATP has been shown to be a taste bud afferent transmitter, but the cells responsible for, and the mechanism of, its release have not been identified. Using CHO cells expressing high-affinity neurotransmitter receptors as biosensors, we show that gustatory stimuli cause receptor cells to secrete ATP through pannexin 1 hemichannels in mouse taste buds. ATP further stimulates other taste cells to release a second transmitter, serotonin. These results provide a mechanism to link intracellular Ca2+ release during taste transduction to secretion of afferent transmitter, ATP, from receptor cells. They also indicate a route for cell–cell communication and signal processing within the taste bud.


The Journal of Neuroscience | 2006

Separate Populations of Receptor Cells and Presynaptic Cells in Mouse Taste Buds

Richard A. DeFazio; Gennady Dvoryanchikov; Yutaka Maruyama; Joung Woul Kim; Elizabeth Pereira; Stephen D. Roper; Nirupa Chaudhari

Taste buds are aggregates of 50–100 cells, only a fraction of which express genes for taste receptors and intracellular signaling proteins. We combined functional calcium imaging with single-cell molecular profiling to demonstrate the existence of two distinct cell types in mouse taste buds. Calcium imaging revealed that isolated taste cells responded with a transient elevation of cytoplasmic Ca2+ to either tastants or depolarization with KCl, but never both. Using single-cell reverse transcription (RT)-PCR, we show that individual taste cells express either phospholipase C β2 (PLCβ2) (an essential taste transduction effector) or synaptosomal-associated protein 25 (SNAP25) (a key component of calcium-triggered transmitter exocytosis). The two functional classes revealed by calcium imaging mapped onto the two gene expression classes determined by single-cell RT-PCR. Specifically, cells responding to tastants expressed PLCβ2, whereas cells responding to KCl depolarization expressed SNAP25. We demonstrate this by two methods: first, through sequential calcium imaging and single-cell RT-PCR; second, by performing calcium imaging on taste buds in slices from transgenic mice in which PLCβ2-expressing taste cells are labeled with green fluorescent protein. To evaluate the significance of the SNAP25-expressing cells, we used RNA amplification from single cells, followed by RT-PCR. We show that SNAP25-positive cells also express typical presynaptic proteins, including a voltage-gated calcium channel (α1A), neural cell adhesion molecule, synapsin-II, and the neurotransmitter-synthesizing enzymes glutamic acid decarboxylase and aromatic amino acid decarboxylase. No synaptic markers were detected in PLCβ2 cells by either amplified RNA profiling or by immunocytochemistry. These data demonstrate the existence of at least two molecularly distinct functional classes of taste cells: receptor cells and synapse-forming cells.


Nature | 2013

CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes

Akiyuki Taruno; Valérie Vingtdeux; Makoto Ohmoto; Zhongming Ma; Gennady Dvoryanchikov; Ang Li; Leslie Adrien; Haitian Zhao; Sze Leung; Maria Abernethy; Jeremy Koppel; Peter Davies; Mortimer M. Civan; Nirupa Chaudhari; Ichiro Matsumoto; Göran Hellekant; Michael G. Tordoff; Philippe Marambaud; J. Kevin Foskett

Recognition of sweet, bitter and umami tastes requires the non-vesicular release from taste bud cells of ATP, which acts as a neurotransmitter to activate afferent neural gustatory pathways. However, how ATP is released to fulfil this function is not fully understood. Here we show that calcium homeostasis modulator 1 (CALHM1), a voltage-gated ion channel, is indispensable for taste-stimuli-evoked ATP release from sweet-, bitter- and umami-sensing taste bud cells. Calhm1 knockout mice have severely impaired perceptions of sweet, bitter and umami compounds, whereas their recognition of sour and salty tastes remains mostly normal. Calhm1 deficiency affects taste perception without interfering with taste cell development or integrity. CALHM1 is expressed specifically in sweet/bitter/umami-sensing type II taste bud cells. Its heterologous expression induces a novel ATP permeability that releases ATP from cells in response to manipulations that activate the CALHM1 ion channel. Knockout of Calhm1 strongly reduces voltage-gated currents in type II cells and taste-evoked ATP release from taste buds without affecting the excitability of taste cells by taste stimuli. Thus, CALHM1 is a voltage-gated ATP-release channel required for sweet, bitter and umami taste perception.


The Journal of Comparative Neurology | 2007

Biogenic amine synthesis and uptake in rodent taste buds

Gennady Dvoryanchikov; Seth M. Tomchik; Nirupa Chaudhari

Although adenosine triphosphate (ATP) is known to be an afferent transmitter in the peripheral taste system, serotonin (5‐HT) and norepinephrine (NE) have also been proposed as candidate neurotransmitters and have been detected immunocytochemically in mammalian taste cells. To understand the significance of biogenic amines in taste, we evaluated the ability of taste cells to synthesize, transport, and package 5‐HT and NE. We show by reverse transcriptase‐polymerase chain reaction and immunofluorescence microscopy that the enzymes for 5‐HT synthesis, tryptophan hydroxylase (TPH) and aromatic amino acid decarboxylase (AADC) are expressed in taste cells. In contrast, enzymes necessary for NE synthesis, tyrosine hydroxylase (TH) and dopamine β‐hydroxylase (DBH) are absent. Both TH and DBH are expressed in nerve fibers that penetrate taste buds. Taste buds also robustly express plasma membrane transporters for 5‐HT and NE. Within the taste bud NET, a specific NE transporter, is expressed in some presynaptic (type III) and some glial‐like (type I) cells but not in receptor (type II) cells. By using enzyme immunoassay, we show uptake of NE, probably through NET in taste epithelium. Proteins involved in inactivating and packaging NE, including catechol‐O‐methyltransferase (COMT), monoamine oxidase‐A (MAO‐A), vesicular monoamine transporter (VMAT1,2) and chromogranin A (ChrgA), are also expressed in taste buds. Within the taste bud, ChrgA is found only in presynaptic cells and may account for dense‐cored vesicles previously seen in some taste cells. In summary, we postulate that aminergic presynaptic taste cells synthesize only 5‐HT, whereas NE (perhaps secreted by sympathetic fibers) may be concentrated and repackaged for secretion. J. Comp. Neurol. 505:302–313, 2007.


The Journal of Neuroscience | 2004

Acid-Sensing Ion Channel-2 Is Not Necessary for Sour Taste in Mice

Trevor A. Richter; Gennady Dvoryanchikov; Stephen D. Roper; Nirupa Chaudhari

The acid-sensitive cation channel acid-sensing ion channel-2 (ASIC2) is widely believed to be a receptor for acid (sour) taste in mammals on the basis of its physiological properties and expression in rat taste bud cells. Using reverse transcriptase-PCR, we detected expression of ASIC1 and ASIC3, but not ASIC4, in mouse and rat taste buds and nonsensory lingual epithelium. Surprisingly, we did not detect mRNA for ASIC2 in mouse taste buds, although we readily observed its expression in rat taste buds. Furthermore, in Ca2+ imaging experiments, ASIC2 knock-out mice exhibited normal physiological responses (increases in intracellular Ca2+ concentrations) to acid taste stimuli. Our results indicate that ASIC2 is not required for acid taste in mice, and that if a universal mammalian acid taste transduction mechanism exists, it likely uses other acid-sensitive receptors or ion channels.


The Journal of Neuroscience | 2011

GABA, its receptors, and GABAergic inhibition in mouse taste buds

Gennady Dvoryanchikov; Yijen A. Huang; Rene Barro-Soria; Nirupa Chaudhari; Stephen D. Roper

Taste buds consist of at least three principal cell types that have different functions in processing gustatory signals: glial-like (type I) cells, receptor (type II) cells, and presynaptic (type III) cells. Using a combination of Ca2+ imaging, single-cell reverse transcriptase-PCR and immunostaining, we show that GABA is an inhibitory transmitter in mouse taste buds, acting on GABAA and GABAB receptors to suppress transmitter (ATP) secretion from receptor cells during taste stimulation. Specifically, receptor cells express GABAA receptor subunits β2, δ, and π, as well as GABAB receptors. In contrast, presynaptic cells express the GABAA β3 subunit and only occasionally GABAB receptors. In keeping with the distinct expression pattern of GABA receptors in presynaptic cells, we detected no GABAergic suppression of transmitter release from presynaptic cells. We suggest that GABA may serve function(s) in taste buds in addition to synaptic inhibition. Finally, we also defined the source of GABA in taste buds: GABA is synthesized by GAD65 in type I taste cells as well as by GAD67 in presynaptic (type III) taste cells and is stored in both those two cell types. We conclude that GABA is an inhibitory transmitter released during taste stimulation and possibly also during growth and differentiation of taste buds.


The Journal of Comparative Neurology | 2009

Inward rectifier channel, ROMK, is localized to the apical tips of glial‐like cells in mouse taste buds

Gennady Dvoryanchikov; Michael S. Sinclair; Isabel Perea-Martinez; Tong Wang; Nirupa Chaudhari

Cells in taste buds are closely packed, with little extracellular space. Tight junctions and other barriers further limit permeability and may result in buildup of extracellular K+ following action potentials. In many tissues, inwardly rectifying K channels such as the renal outer medullary K (ROMK) channel (also called Kir1.1 and derived from the Kcnj1 gene) help to redistribute K+. Using reverse‐transcription polymerase chain reaction (RT‐PCR), we defined ROMK splice variants in mouse kidney and report here the expression of a single one of these, ROMK2, in a subset of mouse taste cells. With quantitative (q)RT‐PCR, we show the abundance of ROMK mRNA in taste buds is vallate > foliate > > palate > > fungiform. ROMK protein follows the same pattern of prevalence as mRNA, and is essentially undetectable by immunohistochemistry in fungiform taste buds. ROMK protein is localized to the apical tips of a subset of taste cells. Using tissues from PLCβ2‐GFP and GAD1‐GFP transgenic mice, we show that ROMK is not found in PLCβ2‐expressing type II/receptor cells or in GAD1‐expressing type III/presynaptic cells. Instead, ROMK is found, by single‐cell RT‐PCR and immunofluorescence, in most cells that are positive for the taste glial cell marker, Ectonucleotidase2. ROMK is precisely localized to the apical tips of these cells, at and above apical tight junctions. We propose that in taste buds, ROMK in type I/glial‐like cells may serve a homeostatic function, excreting excess K+ through the apical pore, and allowing excitable taste cells to maintain a hyperpolarized resting membrane potential. J. Comp. Neurol. 517:1–14, 2009.


The Journal of Neuroscience | 2012

Adenosine enhances sweet taste through A2B receptors in the taste bud

Robin Dando; Gennady Dvoryanchikov; Elizabeth Pereira; Nirupa Chaudhari; Stephen D. Roper

Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca2+ mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 μm). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 μm) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell reverse transcriptase (RT)-PCR on isolated vallate taste cells, we show that many Receptor cells express the adenosine receptor, Adora2b, while Presynaptic (type III) and Glial-like (type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5′-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase. Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry, and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste.


The Journal of Neuroscience | 2011

Knocking Out P2X Receptors Reduces Transmitter Secretion in Taste Buds

Yijen A. Huang; Leslie M. Stone; Elizabeth Pereira; Ruibiao Yang; John C. Kinnamon; Gennady Dvoryanchikov; Nirupa Chaudhari; Thomas E. Finger; Sue C. Kinnamon; Stephen D. Roper

In response to gustatory stimulation, taste bud cells release a transmitter, ATP, that activates P2X2 and P2X3 receptors on gustatory afferent fibers. Taste behavior and gustatory neural responses are largely abolished in mice lacking P2X2 and P2X3 receptors [P2X2 and P2X3 double knock-out (DKO) mice]. The assumption has been that eliminating P2X2 and P2X3 receptors only removes postsynaptic targets but that transmitter secretion in mice is normal. Using functional imaging, ATP biosensor cells, and a cell-free assay for ATP, we tested this assumption. Surprisingly, although gustatory stimulation mobilizes Ca2+ in taste Receptor (Type II) cells from DKO mice, as from wild-type (WT) mice, taste cells from DKO mice fail to release ATP when stimulated with tastants. ATP release could be elicited by depolarizing DKO Receptor cells with KCl, suggesting that ATP-release machinery remains functional in DKO taste buds. To explore the difference in ATP release across genotypes, we used reverse transcriptase (RT)-PCR, immunostaining, and histochemistry for key proteins underlying ATP secretion and degradation: Pannexin1, TRPM5, and NTPDase2 (ecto-ATPase) are indistinguishable between WT and DKO mice. The ultrastructure of contacts between taste cells and nerve fibers is also normal in the DKO mice. Finally, quantitative RT-PCR show that P2X4 and P2X7, potential modulators of ATP secretion, are similarly expressed in taste buds in WT and DKO taste buds. Importantly, we find that P2X2 is expressed in WT taste buds and appears to function as an autocrine, positive feedback signal to amplify taste-evoked ATP secretion.


PLOS ONE | 2010

Oxytocin Signaling in Mouse Taste Buds

Michael S. Sinclair; Isabel Perea-Martinez; Gennady Dvoryanchikov; Masahide Yoshida; Katsuhiko Nishimori; Stephen D. Roper; Nirupa Chaudhari

Background The neuropeptide, oxytocin (OXT), acts on brain circuits to inhibit food intake. Mutant mice lacking OXT (OXT knockout) overconsume salty and sweet (i.e. sucrose, saccharin) solutions. We asked if OXT might also act on taste buds via its receptor, OXTR. Methodology/Principal Findings Using RT-PCR, we detected the expression of OXTR in taste buds throughout the oral cavity, but not in adjacent non-taste lingual epithelium. By immunostaining tissues from OXTR-YFP knock-in mice, we found that OXTR is expressed in a subset of Glial-like (Type I) taste cells, and also in cells on the periphery of taste buds. Single-cell RT-PCR confirmed this cell-type assignment. Using Ca2+ imaging, we observed that physiologically appropriate concentrations of OXT evoked [Ca2+]i mobilization in a subset of taste cells (EC50 ∼33 nM). OXT-evoked responses were significantly inhibited by the OXTR antagonist, L-371,257. Isolated OXT-responsive taste cells were neither Receptor (Type II) nor Presynaptic (Type III) cells, consistent with our immunofluorescence observations. We also investigated the source of OXT peptide that may act on taste cells. Both RT-PCR and immunostaining suggest that the OXT peptide is not produced in taste buds or in their associated nerves. Finally, we also examined the morphology of taste buds from mice that lack OXTR. Taste buds and their constituent cell types appeared very similar in mice with two, one or no copies of the OXTR gene. Conclusions/Significance We conclude that OXT elicits Ca2+ signals via OXTR in murine taste buds. OXT-responsive cells are most likely a subset of Glial-like (Type I) taste cells. OXT itself is not produced locally in taste tissue and is likely delivered through the circulation. Loss of OXTR does not grossly alter the morphology of any of the cell types contained in taste buds. Instead, we speculate that OXT-responsive Glial-like (Type I) taste bud cells modulate taste signaling and afferent sensory output. Such modulation would complement central pathways of appetite regulation that employ circulating homeostatic and satiety signals.

Collaboration


Dive into the Gennady Dvoryanchikov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irina A. Serova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Andreeva Le

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

I. A. Burkov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

N. V. Baginskaya

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

N. V. Khaidarova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

L. P. B. Dias

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge