Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Genny A. Pang is active.

Publication


Featured researches published by Genny A. Pang.


Zeitschrift für Physikalische Chemie | 2011

High-Temperature Measurements of the Rate Constants for Reactions of OH with a Series of Large Normal Alkanes: n-Pentane, n-Heptane, and n-Nonane

Genny A. Pang; Ronald K. Hanson; David M. Golden; Craig T. Bowman

Abstract Rate constants for the overall reactions of OH with n-pentane, n-heptane, and n-nonane were measured in shock tube experiments behind reflected shock waves. Narrow-linewidth laser absorption by OH at 306.7 nm was used in pseudo first-order experiments with temperatures between 869 to 1364 K. tert-Butyl hydroperoxide (TBHP) was used as the OH precursor. Experiments were also performed to study the kinetics of the TBHP decomposition and resulting product chemistry, and an accurate mechanism describing OH precursor chemistry effects was developed to model OH concentration time-history in the n-alkane + OH experiments. The experimental results for the n-alkane + OH rate constant measurements can be expressed as rate constants in Arrhenius form as k n-pentane + OH = 2.10 × 10-10 exp(-2038/T[K]) (869–1364 K), k n-heptane + OH = 2.43 × 10-10 exp(-1804/T[K]) (869–1364 K), k n-nonane + OH = 3.17 × 10-10 exp(-1801/T[K]) (884–1352 K), each in units of cm3 molecule-1 s-1. The present rate constants measured for OH with n-pentane and n-heptane show agreement within 20% with recent work by Sivaramakrishnan and Michael [J. Phys. Chem. A, 113 (2009) 5047]. The measurements of the rate constant for n-nonane + OH presented here represent the first in the literature to depict the temperature dependence of the rate constant above 800 K. The measurements of each n-alkane + OH rate constant studied were compared with two models in the literature used to estimate the rate constants of n-alkane + OH reactions. The Structure-Activity Relationship of Kwok and Atkinson [Atmos. Environ., 29 (1995) 1685] shows the best agreement with the current data for all three n-alkanes over the entire temperature range studied, demonstrating that this model is capable of predicting the overall rate constants for reactions of OH with n-pentane, n-heptane, and n-nonane for temperatures up to 1364 K.


Journal of Physical Chemistry A | 2012

Rate Constant Measurements for the Overall Reaction of OH + 1-Butanol → Products from 900 to 1200 K

Genny A. Pang; Ronald K. Hanson; David M. Golden; Craig T. Bowman

The rate constant for the overall reaction OH + 1-butanol → products was determined in the temperature range 900 to 1200 K from measurements of OH concentration time histories in reflected shock wave experiments of tert-butyl hydroperoxide (TBHP) as a fast source of OH radicals with 1-butanol in excess. Narrow-linewidth laser absorption was employed for the quantitative OH concentration measurement. A detailed kinetic mechanism was constructed that includes updated rate constants for 1-butanol and TBHP kinetics that influence the near-first-order OH concentration decay under the present experimental conditions, and this mechanism was used to facilitate the rate constant determination. The current work improves upon previous experimental studies of the title rate constant by utilizing a rigorously generated kinetic model to describe secondary reactions. Additionally, the current work extends the temperature range of experimental data in the literature for the title reaction under combustion-relevant conditions, presenting the first measurements from 900 to 1000 K. Over the entire temperature range studied, the overall rate constant can be expressed in Arrhenius form as 3.24 × 10(-10) exp(-2505/T [K]) cm(3) molecule(-1) s(-1). The influence of secondary reactions on the overall OH decay rate is discussed, and a detailed uncertainty analysis is performed yielding an overall uncertainty in the measured rate constant of ±20% at 1197 K and ±23% at 925 K. The results are compared with previous experimental and theoretical studies on the rate constant for the title reaction and reasonable agreement is found when the earlier experimental data were reinterpreted.


Journal of Physical Chemistry A | 2012

High-Temperature Rate Constant Determination for the Reaction of OH with iso-Butanol

Genny A. Pang; Ronald K. Hanson; David M. Golden; Craig T. Bowman

This work presents the first direct experimental study of the rate constant for the reaction of OH with iso-butanol (2-methyl-1-propanol) at temperatures from 907 to 1147 K at near-atmospheric pressures. OH time-histories were measured behind reflected shock waves using a narrow-linewidth laser absorption method during reactions of dilute mixtures of tert-butylhydroperoxide (as a fast source of OH) with iso-butanol in excess. The title reactions overall rate constant (OH + iso-butanol →(k(overall)) all products) minus the rate constant for the β-radical-producing channel (OH + iso-butanol →(k(β)) 1-hydroxy-2-methyl-prop-2-yl radical + H(2)O) was determined from the pseudo-first-order rate of OH decay. A two-parameter Arrhenius fit of the experimentally determined rate constant in the current temperature range yields the expression (k(overall) - k(β)) = 1.84 × 10(-10) exp(-2350/T[K]) cm(3) molecule(-1) s(-1). A recommendation for the overall rate constant, including k(β), is made, and comparisons of the results to rate constant recommendations from the literature are discussed.


Journal of Physical Chemistry A | 2013

Shock tube measurements of the tert-butanol + OH reaction rate and the tert-C4H8OH radical β-scission branching ratio using isotopic labeling.

Ivo Stranic; Genny A. Pang; Ronald K. Hanson; David M. Golden; Craig T. Bowman

The overall rate constant for the reaction tert-butanol + OH → products was determined experimentally behind reflected shock waves by using (18)O-substituted tert-butanol (tert-butan(18)ol) and tert-butyl hydroperoxide (TBHP) as a fast source of (16)OH. The data were acquired from 900 to 1200 K near 1.1 atm and are best fit by the Arrhenius expression 1.24 × 10(-10) exp(-2501/T [K]) cm(3) molecule(-1) s(-1). The products of the title reaction include the tert-C4H8OH radical that is known to have two major β-scission decomposition channels, one of which produces OH radicals. Experiments with the isotopically labeled tert-butan(18)ol also lead to an experimental determination of the branching ratio for the β-scission pathways of the tert-C4H8OH radical by comparing the measured pseudo-first-order decay rate of (16)OH in the presence of excess tert-butan(16)ol with the respective decay rate of (16)OH in the presence of excess tert-butan(18)ol. The two decay rates of (16)OH as a result of reactions with the two forms of tert-butanol differ by approximately a factor of 5 due to the absence of (16)OH-producing pathways in experiments with tert-butan(18)ol. This indicates that 80% of the (16)OH molecules that react with tert-butan(16)ol will reproduce another (16)OH molecule through β-scission of the resulting tert-C4H8(16)OH radical. (16)OH mole fraction time histories were measured using narrow-line-width laser absorption near 307 nm. Measurements were performed at the line center of the R22(5.5) transition in the A-X(0,0) band of (16)OH, a transition that does not overlap with any absorption features of (18)OH, hence yielding a measurement of (16)OH mole fraction that is insensitive to any production of (18)OH.


Journal of Physical Chemistry A | 2012

Experimental determination of the high-temperature rate constant for the reaction of OH with sec-butanol.

Genny A. Pang; Ronald K. Hanson; David M. Golden; Craig T. Bowman

The overall rate constant for the reaction of OH with sec-butanol [CH(3)CH(OH)CH(2)CH(3)] was determined from measurements of the near-first-order OH decay in shock-heated mixtures of tert-butylhydroperoxide (as a fast source of OH) with sec-butanol in excess. Three kinetic mechanisms from the literature describing sec-butanol combustion were used to examine the sensitivity of the rate constant determination to secondary kinetics. The overall rate constant determined can be described by the Arrhenius expression 6.97 × 10(-11) exp(-1550/T[K]) cm(3) molecule(-1) s(-1), valid over the temperature range of 888-1178 K. Uncertainty bounds of ±30% were found to adequately account for the uncertainty in secondary kinetics. To our knowledge, the current data represent the first efforts toward an experimentally determined rate constant for the overall reaction of OH with sec-butanol at combustion-relevant temperatures. A rate constant predicted using a structure-activity relationship from the literature was compared to the current data and previous rate constant measurements for the title reaction at atmospheric-relevant temperatures. The structure-activity relationship was found to be unable to correctly predict the measured rate constant at all temperatures where experimental data exist. We found that the three-parameter fit of 4.95 × 10(-20)T(2.66) exp(+1123/T[K]) cm(3) molecule(-1) s(-1) better describes the overall rate constant for the reaction of OH with sec-butanol from 263 to 1178 K.


Journal of Physical Chemistry A | 2014

Shock tube measurements of the rate constant for the reaction ethanol + OH.

Ivo Stranic; Genny A. Pang; Ronald K. Hanson; David M. Golden; Craig T. Bowman

The overall rate constant for the reaction ethanol + OH → products was determined experimentally from 900 to 1270 K behind reflected shock waves. Ethan(18)ol was utilized for these measurements in order to avoid the recycling of OH radicals following H-atom abstraction at the β-site of ethanol. Similar experiments were also performed with unlabeled ethan(16)ol in order to infer the rate constant that excludes reactivity at the β-site. The two data sets were used to directly infer the branching ratio for the reaction at the β-site. Experimental data in the current study and in previous low-temperature studies for the overall rate constant are best fit by the expression koverall = 5.07 × 10(5) T[K](2.31) exp(608/T[K]) cm(3) mol(-1) s(-1), valid from 300 to 1300 K. Measurements indicate that the branching ratio of the β-site is between 20 and 25% at the conditions studied. Pseudo-first-order reaction conditions were generated using tert-butylhydroperoxide (TBHP) as a fast source of (16)OH with ethanol in excess. (16)OH mole fraction time-histories were measured using narrow-line width laser absorption near 307 nm. Measurements were performed at the linecenter of the R22(5.5) transition in the A-X(0,0) band of (16)OH that does not overlap with any absorption features of (18)OH, thus producing a measurement of the (16)OH mole fraction that is insensitive to the presence of (18)OH.


Journal of Biophotonics | 2015

Real‐time monitoring of incision profile during laser surgery using shock wave detection

Erwin Bay; Xosé Luís Deán-Ben; Genny A. Pang; Alexandre Douplik; Daniel Razansky

Lack of sensory feedback during laser surgery prevents surgeons from discerning the exact location of the incision, which increases duration and complexity of the treatment. In this study we demonstrate a new method for monitoring of laser ablation procedures. Real-time tracking of the exact three dimensional (3D) lesion profile is accomplished by detection of shock waves emanating from the ablation spot and subsequent reconstruction of the incision location using time-of-flight data obtained from multiple acoustic detectors. Here, incisions of up to 9 mm in depth, created by pulsed laser ablation of fresh bovine tissue samples, were successfully monitored in real time. It was further observed that, by utilizing as little as 12 detection elements, the incision profile can be characterized with accuracy below 0.5 mm in all three dimensions and in good agreement with histological examinations. The proposed method holds therefore promise for delivering high precision real-time feedback during laser surgeries.


International Symposium on Shock Waves | 2013

Constrained Reaction Volume: A New Approach to Studying Reactive Systems in Shock Tubes

Ronald K. Hanson; S. Chakraborty; Genny A. Pang; Wei Ren; Shengkai Wang; David F. Davidson

One of the current problems facing kinetics modeling of combustion processes in shock tubes is the need for a simple, well-defined gasdynamics model that can be used to describe the time-dependent reflected test gas conditions throughout energetic ignition events. The near-constant-pressure or near-constant-volume assumption that may be valid before ignition is clearly violated behind reflected shock waves in conventional shock tubes when there is large energy release. In these cases, accurate modeling, both gasdynamic and chemical, throughout the ignition event is effectively impossible without having to resort to multi-dimensional computation schemes.


Proceedings of SPIE | 2015

Optoacoustic monitoring of real-time lesion formation during radiofrequency catheter ablation

Genny A. Pang; Erwin Bay; Xosé Luís Deán-Ben; Daniel Razansky

Current radiofrequency cardiac ablation procedures lack real-time lesion monitoring guidance, limiting the reliability and efficacy of the treatment. The objective of this work is to demonstrate that optoacoustic imaging can be applied to develop a diagnostic technique applicable to radiofrequency ablation for cardiac arrhythmia treatment with the capabilities of real-time monitoring of ablated lesion size and geometry. We demonstrate an optoacoustic imaging method using a 256-detector optoacoustic imaging probe and pulsed-laser illumination in the infrared wavelength range that is applied during radiofrequency ablation in excised porcine myocardial tissue samples. This technique results in images with high contrast between the lesion volume and unablated tissue, and is also capable of capturing time-resolved image sequences that provide information on the lesion development process. The size and geometry of the imaged lesion were shown to be in excellent agreement with the histological examinations. This study demonstrates the first deep-lesion real-time monitoring for radiofrequency ablation generated lesions, and the technique presented here has the potential for providing critical feedback that can significantly impact the outcome of clinical radiofrequency ablation procedures.


Proceedings of SPIE | 2014

Three-dimensional tracking of lesion profile during laser surgery based on shock wave detection

Erwin Bay; Xose Luis Dean Ben; Genny A. Pang; Alexandre Douplik; Daniel Razansky

Lack of sensory feedback during laser surgery prevents surgeons from keeping track of the exact lesion profile and cutting depth. As a result, duration and complexity of the treatments are significantly increased. In this study we propose a new method for enabling three-dimensional tracking of the exact lesion profile, based on detection of shock waves emanating from the ablated tissue and subsequent reconstruction of the incision location using time-of-flight data obtained from multiple acoustic detectors. Ablation was performed in fresh bovine tissue samples using a Q-switched Nd-YAG laser, delivering 8 ns duration 150mJ pulses at a wavelength of 1064nm and repetition rate of 5Hz. The beam was focused by a 50mm lens on the tissue surface, which resulted in a deep cut of up to 9mm depth. The generated shock waves were detected using a spherical matrix ultrasonic array. The exact cutting profile was subsequently rendered by reconstructing the origin of shockwaves detected during the entire procedure. Different combinations of the detector positions were considered with respect to the resulting reconstruction quality. It was observed that, by utilizing at least 12 detection elements, the lesion profile could be characterized with high accuracy in all three dimensions, which was confirmed by histological evaluations. The proposed method holds promise for delivering highly precise and accurate real-time feedback during laser surgeries.

Collaboration


Dive into the Genny A. Pang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge