Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geoff S. Higgins is active.

Publication


Featured researches published by Geoff S. Higgins.


Cancer Research | 2010

A Small Interfering RNA Screen of Genes Involved in DNA Repair Identifies Tumor-Specific Radiosensitization by POLQ Knockdown

Geoff S. Higgins; Remko Prevo; Yin-Fai Lee; Thomas Helleday; Ruth J. Muschel; Steve Taylor; Michio Yoshimura; Ian D. Hickson; Eric J. Bernhard; W. Gillies McKenna

The effectiveness of radiotherapy treatment could be significantly improved if tumor cells could be rendered more sensitive to ionizing radiation (IR) without altering the sensitivity of normal tissues. However, many of the key therapeutically exploitable mechanisms that determine intrinsic tumor radiosensitivity are largely unknown. We have conducted a small interfering RNA (siRNA) screen of 200 genes involved in DNA damage repair aimed at identifying genes whose knockdown increased tumor radiosensitivity. Parallel siRNA screens were conducted in irradiated and unirradiated tumor cells (SQ20B) and irradiated normal tissue cells (MRC5). Using gammaH2AX foci at 24 hours after IR, we identified several genes, such as BRCA2, Lig IV, and XRCC5, whose knockdown is known to cause increased cell radiosensitivity, thereby validating the primary screening end point. In addition, we identified POLQ (DNA polymerase ) as a potential tumor-specific target. Subsequent investigations showed that POLQ knockdown resulted in radiosensitization of a panel of tumor cell lines from different primary sites while having little or no effect on normal tissue cell lines. These findings raise the possibility that POLQ inhibition might be used clinically to cause tumor-specific radiosensitization.


Radiation Oncology | 2012

NVP-BEZ235 and NVP-BGT226, dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitors, enhance tumor and endothelial cell radiosensitivity

Emmanouil Fokas; Michio Yoshimura; Remko Prevo; Geoff S. Higgins; Wolfgang Hackl; Sauveur-Michel Maira; Eric J. Bernhard; WGillies McKenna; Ruth J. Muschel

BackgroundThe phosphatidylinositol 3-kinase (PI3K)/Akt pathway is activated in tumor cells and promotes tumor cell survival after radiation-induced DNA damage. Because the pathway may not be completely inhibited after blockade of PI3K itself, due to feedback through mammalian target of rapamycin (mTOR), more effective inhibition might be expected by targeting both PI3K and mTOR inhibition.Materials and methodsWe investigated the effect of two dual PI3K/mTOR (both mTORC1 and mTORC2) inhibitors, NVP-BEZ235 and NVP-BGT226, on SQ20B laryngeal and FaDu hypopharyngeal cancer cells characterised by EGFR overexpression, on T24 bladder tumor cell lines with H-Ras mutation and on endothelial cells. Analysis of target protein phosphorylation, clonogenic survival, number of residual γH2AX foci, cell cycle and apoptosis after radiation was performed in both tumor and endothelial cells. In vitro angiogenesis assays were conducted as well.ResultsBoth compounds effectively inhibited phosphorylation of Akt, mTOR and S6 target proteins and reduced clonogenic survival in irradiated tumor cells. Persistence of DNA damage, as evidenced by increased number of γH2AX foci, was detected after irradiation in the presence of PI3K/mTOR inhibition, together with enhanced G2 cell cycle delay. Treatment with one of the inhibitors, NVP-BEZ235, also resulted in decreased clonogenicity after irradiation of tumor cells under hypoxic conditions. In addition, NVP-BEZ235 blocked VEGF- and IR-induced Akt phosphorylation and increased radiation killing in human umbilical venous endothelial cells (HUVEC) and human dermal microvascular dermal cells (HDMVC). NVP-BEZ235 inhibited VEGF-induced cell migration and capillary tube formation in vitro and enhanced the antivascular effect of irradiation. Treatment with NVP-BEZ235 moderately increased apoptosis in SQ20B and HUVEC cells but not in FaDu cells, and increased necrosis in both tumor and endothelial all cells tumor.ConclusionsThe results of this study demonstrate that PI3K/mTOR inhibitors can enhance radiation-induced killing in tumor and endothelial cells and may be of benefit when combined with radiotherapy.


Nature Communications | 2016

The anti-malarial atovaquone increases radiosensitivity by alleviating tumour hypoxia

Thomas M. Ashton; Emmanouil Fokas; Lisa K. Folkes; Selvakumar Anbalagan; Melanie Huether; Catherine Kelly; Giacomo Pirovano; Francesca M. Buffa; Ester M. Hammond; Michael R.L. Stratford; Ruth J. Muschel; Geoff S. Higgins; W.G. McKenna

Tumour hypoxia renders cancer cells resistant to cancer therapy, resulting in markedly worse clinical outcomes. To find clinical candidate compounds that reduce hypoxia in tumours, we conduct a high-throughput screen for oxygen consumption rate (OCR) reduction and identify a number of drugs with this property. For this study we focus on the anti-malarial, atovaquone. Atovaquone rapidly decreases the OCR by more than 80% in a wide range of cancer cell lines at pharmacological concentrations. In addition, atovaquone eradicates hypoxia in FaDu, HCT116 and H1299 spheroids. Similarly, it reduces hypoxia in FaDu and HCT116 xenografts in nude mice, and causes a significant tumour growth delay when combined with radiation. Atovaquone is a ubiquinone analogue, and decreases the OCR by inhibiting mitochondrial complex III. We are now undertaking clinical studies to assess whether atovaquone reduces tumour hypoxia in patients, thereby increasing the efficacy of radiotherapy.


International Journal of Radiation Oncology Biology Physics | 2016

Dose and Fractionation in Radiation Therapy of Curative Intent for Non-Small Cell Lung Cancer: Meta-Analysis of Randomized Trials

Johanna Ramroth; David J. Cutter; Sarah C. Darby; Geoff S. Higgins; Paul McGale; Mike Partridge; C Taylor

Purpose The optimum dose and fractionation in radiation therapy of curative intent for non-small cell lung cancer remains uncertain. We undertook a published data meta-analysis of randomized trials to examine whether radiation therapy regimens with higher time-corrected biologically equivalent doses resulted in longer survival, either when given alone or when given with chemotherapy. Methods and Materials Eligible studies were randomized comparisons of 2 or more radiation therapy regimens, with other treatments identical. Median survival ratios were calculated for each comparison and pooled. Results 3795 patients in 25 randomized comparisons of radiation therapy dose were studied. The median survival ratio, higher versus lower corrected dose, was 1.13 (95% confidence interval [CI] 1.04-1.22) when radiation therapy was given alone and 0.83 (95% CI 0.71-0.97) when it was given with concurrent chemotherapy (P for difference=.001). In comparisons of radiation therapy given alone, the survival benefit increased with increasing dose difference between randomized treatment arms (P for trend=.004). The benefit increased with increasing dose in the lower-dose arm (P for trend=.01) without reaching a level beyond which no further survival benefit was achieved. The survival benefit did not differ significantly between randomized comparisons where the higher-dose arm was hyperfractionated and those where it was not. There was heterogeneity in the median survival ratio by geographic region (P<.001), average age at randomization (P<.001), and year trial started (P for trend=.004), but not for proportion of patients with squamous cell carcinoma (P=.2). Conclusions In trials with concurrent chemotherapy, higher radiation therapy doses resulted in poorer survival, possibly caused, at least in part, by high levels of toxicity. Where radiation therapy was given without chemotherapy, progressively higher radiation therapy doses resulted in progressively longer survival, and no upper dose level was found above which there was no further benefit. These findings support the consideration of further radiation therapy dose escalation trials, making use of modern treatment methods to reduce toxicity.


Cancer Treatment Reviews | 2015

Drug radiotherapy combinations: Review of previous failures and reasons for future optimism

Geoff S. Higgins; Sean M. O’Cathail; Ruth J. Muschel; W. Gillies McKenna

Combining chemotherapy with radiotherapy has resulted in significant clinical improvements in many different tumour types. However, the non-specific mechanisms by which these drugs exert their effects mean that this is often at the expense of increased side effects. Previous attempts at using targeted drugs to induce more tumour specific radiosensitisation have been generally disappointing. Although cetuximab, an EGFR monoclonal antibody, resulted in improved overall survival in HNSCC when combined with radiotherapy, it has failed to show benefit when added to chemo-radiotherapy. In addition, our inability to successfully use drug treatments to reverse tumour hypoxia is underlined by the fact that no such treatment is currently in widespread clinical use. The reasons for these failures include the lack of robust biomarkers, and the previous use of drugs with unacceptable side-effect profiles. Despite these disappointments, there is reason for optimism. Our improved understanding of key signal transduction pathways and of tumour specific DNA repair deficiencies has produced new opportunities to specifically radiosensitise tumours. Novel strategies to reduce tumour hypoxia include the use of drugs that cause vascular normalisation and drugs that reduce tumour oxygen consumption. These new strategies, combined with better compounds at our disposal, and an ability to learn from our previous mistakes, mean that there is great promise for future drug-radiotherapy combinations to result in significant clinical benefits.


Nucleic Acids Research | 2016

A role for human homologous recombination factors in suppressing microhomology-mediated end joining.

Sara Ahrabi; Sovan Sarkar; Sophia X. Pfister; Giacomo Pirovano; Geoff S. Higgins; Andrew C. G. Porter; Timothy C. Humphrey

DNA double-strand breaks (DSBs) are toxic lesions, which if improperly repaired can result in cell death or genomic instability. DSB repair is usually facilitated by the classical non-homologous end joining (C-NHEJ), or homologous recombination (HR) pathways. However, a mutagenic alternative NHEJ pathway, microhomology-mediated end joining (MMEJ), can also be deployed. While MMEJ is suppressed by C-NHEJ, the relationship between HR and MMEJ is less clear. Here, we describe a role for HR genes in suppressing MMEJ in human cells. By monitoring DSB mis-repair using a sensitive HPRT assay, we found that depletion of HR proteins, including BRCA2, BRCA1 or RPA, resulted in a distinct mutational signature associated with significant increases in break-induced mutation frequencies, deletion lengths and the annealing of short regions of microhomology (2–6 bp) across the break-site. This signature was dependent on CtIP, MRE11, POLQ and PARP, and thus indicative of MMEJ. In contrast to CtIP or MRE11, depletion of BRCA1 resulted in increased partial resection and MMEJ, thus revealing a functional distinction between these early acting HR factors. Together these findings indicate that HR factors suppress mutagenic MMEJ following DSB resection.


Clinical Cancer Research | 2016

Improving the Predictive Value of Preclinical Studies in Support of Radiotherapy Clinical Trials.

C. Norman Coleman; Geoff S. Higgins; J. Martin Brown; Michael Baumann; David G. Kirsch; Henning Willers; Pataje G.S. Prasanna; Mark W. Dewhirst; Eric J. Bernhard; Mansoor M. Ahmed

There is an urgent need to improve reproducibility and translatability of preclinical data to fully exploit opportunities for molecular therapeutics involving radiation and radiochemotherapy. For in vitro research, the clonogenic assay remains the current state-of-the-art of preclinical assays, whereas newer moderate and high-throughput assays offer the potential for rapid initial screening. Studies of radiation response modification by molecularly targeted agents can be improved using more physiologic 3D culture models. Elucidating effects on the cancer stem cells (CSC, and CSC-like) and developing biomarkers for defining targets and measuring responses are also important. In vivo studies are necessary to confirm in vitro findings, further define mechanism of action, and address immunomodulation and treatment-induced modification of the microenvironment. Newer in vivo models include genetically engineered and patient-derived xenograft mouse models and spontaneously occurring cancers in domesticated animals. Selection of appropriate endpoints is important for in vivo studies; for example, regrowth delay measures bulk tumor killing, whereas local tumor control assesses effects on CSCs. The reliability of individual assays requires standardization of procedures and cross-laboratory validation. Radiation modifiers must be tested as part of clinical standard of care, which includes radiochemotherapy for most tumors. Radiation models are compatible with but also differ from those used for drug screening. Furthermore, the mechanism of a drug as a chemotherapeutic agent may be different from its interaction with radiation and/or radiochemotherapy. This provides an opportunity to expand the use of molecular-targeted agents. Clin Cancer Res; 22(13); 3138–47. ©2016 AACR.


Medical Physics | 2017

18F‐fluoromisonidazole uptake in advanced stage non‐small cell lung cancer: A voxel‐by‐voxel PET kinetics study

Daniel R. McGowan; Ruth E. Macpherson; Sara Lyons Hackett; Dan Liu; Fergus V. Gleeson; W. Gillies McKenna; Geoff S. Higgins; John D. Fenwick

Purpose The aim of this study was to determine the relative abilities of compartment models to describe time‐courses of 18F‐fluoromisonidazole (FMISO) uptake in tumor voxels of patients with non‐small cell lung cancer (NSCLC) imaged using dynamic positron emission tomography. Also to use fits of the best‐performing model to investigate changes in fitted rate‐constants with distance from the tumor edge. Methods Reversible and irreversible two‐ and three‐tissue compartment models were fitted to 24 662 individual voxel time activity curves (TACs) obtained from tumors in nine patients, each imaged twice. Descriptions of the TACs provided by the models were compared using the Akaike and Bayesian information criteria (AIC and BIC). Two different models (two‐ and three‐tissue) were fitted to 30 measured voxel TACs to provide ground‐truth TACs for a statistical simulation study. Appropriately scaled noise was added to each of the resulting ground‐truth TACs, generating 1000 simulated noisy TACs for each ground‐truth TAC. The simulation study was carried out to provide estimates of the accuracy and precision with which parameter values are determined, the estimates being obtained for both assumptions about the ground‐truth kinetics. A BIC clustering technique was used to group the fitted rate‐constants, taking into consideration the underlying uncertainties on the fitted rate‐constants. Voxels were also categorized according to their distance from the tumor edge. Results For uptake time‐courses of individual voxels an irreversible two‐tissue compartment model was found to be most precise. The simulation study indicated that this model had a one standard deviation precision of 39% for tumor fractional blood volumes and 37% for the FMISO binding rate‐constant. Weighted means of fitted FMISO binding rate‐constants of voxels in all tumors rose significantly with increasing distance from the tumor edge, whereas fitted fractional blood volumes fell significantly. When grouped using the BIC clustering, many centrally located voxels had high‐fitted FMISO binding rate‐constants and low rate‐constants for tracer flow between the vasculature and tumor, both indicative of hypoxia. Nevertheless, many of these voxels had tumor‐to‐blood (TBR) values lower than the 1.4 level commonly expected for hypoxic tissues, possibly due to the low rate‐constants for tracer flow between the vasculature and tumor cells in these voxels. Conclusions Time‐courses of FMISO uptake in NSCLC tumor voxels are best analyzed using an irreversible two‐tissue compartment model, fits of which provide more precise parameter values than those of a three‐tissue model. Changes in fitted model parameter values indicate that levels of hypoxia rise with increasing distance from tumor edges. The average FMISO binding rate‐constant is higher for voxels in tumor centers than in the next tumor layer out, but the average value of the more simplistic TBR metric is lower in tumor centers. For both metrics, higher values might be considered indicative of hypoxia, and the mismatch in this case is likely to be due to poor perfusion at the tumor center. Kinetics analysis of dynamic PET images may therefore provide more accurate measures of the hypoxic status of such regions than the simpler TBR metric, a hypothesis we are presently exploring in a study of tumor imaging versus histopathology.


Clinical Cancer Research | 2018

Oxidative Phosphorylation as an Emerging Target in Cancer Therapy

Thomas M. Ashton; W. Gillies McKenna; Geoff S. Higgins

Cancer cells have upregulated glycolysis compared with normal cells, which has led many to the assumption that oxidative phosphorylation (OXPHOS) is downregulated in all cancers. However, recent studies have shown that OXPHOS can be also upregulated in certain cancers, including leukemias, lymphomas, pancreatic ductal adenocarcinoma, high OXPHOS subtype melanoma, and endometrial carcinoma, and that this can occur even in the face of active glycolysis. OXPHOS inhibitors could therefore be used to target cancer subtypes in which OXPHOS is upregulated and to alleviate therapeutically adverse tumor hypoxia. Several drugs including metformin, atovaquone, and arsenic trioxide are used clinically for non-oncologic indications, but emerging data demonstrate their potential use as OXPHOS inhibitors. We highlight novel applications of OXPHOS inhibitors with a suitable therapeutic index to target cancer cell metabolism. Clin Cancer Res; 24(11); 2482–90. ©2018 AACR.


Journal of the National Cancer Institute | 2018

The Future of Radiobiology

David G. Kirsch; Max Diehn; Aparna H. Kesarwala; Amit Maity; Meredith A. Morgan; Julie K. Schwarz; Robert E. Bristow; Sandra Demaria; Iris Eke; Robert J. Griffin; Daphne A. Haas-Kogan; Geoff S. Higgins; Alec C. Kimmelman; Randall J. Kimple; Isabelle M. A. Lombaert; Li Ma; B. Marples; Frank Pajonk; Catherine C Park; Dörthe Schaue; Eric J. Bernhard

Innovation and progress in radiation oncology depend on discovery and insights realized through research in radiation biology. Radiobiology research has led to fundamental scientific insights, from the discovery of stem/progenitor cells to the definition of signal transduction pathways activated by ionizing radiation that are now recognized as integral to the DNA damage response (DDR). Radiobiological discoveries are guiding clinical trials that test radiation therapy combined with inhibitors of the DDR kinases DNA-dependent protein kinase (DNA-PK), ataxia telangiectasia mutated (ATM), ataxia telangiectasia related (ATR), and immune or cell cycle checkpoint inhibitors. To maintain scientific and clinical relevance, the field of radiation biology must overcome challenges in research workforce, training, and funding. The National Cancer Institute convened a workshop to discuss the role of radiobiology research and radiation biologists in the future scientific enterprise. Here, we review the discussions of current radiation oncology research approaches and areas of scientific focus considered important for rapid progress in radiation sciences and the continued contribution of radiobiology to radiation oncology and the broader biomedical research community.

Collaboration


Dive into the Geoff S. Higgins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge