Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geoffrey A. Gaines is active.

Publication


Featured researches published by Geoffrey A. Gaines.


The Astrophysical Journal | 2000

Overview of the Far Ultraviolet Spectroscopic Explorer Mission

H. W. Moos; Webster Cash; L. L. Cowie; Arthur F. Davidsen; Andrea K. Dupree; Paul D. Feldman; Scott D. Friedman; James C. Green; R. F. Green; C. Gry; J. B. Hutchings; Edward B. Jenkins; J. L. Linsky; Roger F. Malina; Andrew G. Michalitsianos; Blair D. Savage; J. M. Shull; O. H. W. Siegmund; Theodore P. Snow; George Sonneborn; A. Vidal-Madjar; Allan J. Willis; Bruce E. Woodgate; D. G. York; Thomas B. Ake; B-G Andersson; John Paul Andrews; Robert H. Barkhouser; Luciana Bianchi; William P. Blair

The Far Ultraviolet Spectroscopic Explorer satellite observes light in the far-ultraviolet spectral region, 905-1187 Angstrom, with a high spectral resolution. The instrument consists of four co-aligned prime-focus telescopes and Rowland spectrographs with microchannel plate detectors. Two of the telescope channels use Al :LiF coatings for optimum reflectivity between approximately 1000 and 1187 Angstrom, and the other two channels use SiC coatings for optimized throughput between 905 and 1105 Angstrom. The gratings are holographically ruled to correct largely for astigmatism and to minimize scattered light. The microchannel plate detectors have KBr photocathodes and use photon counting to achieve good quantum efficiency with low background signal. The sensitivity is sufficient to examine reddened lines of sight within the Milky Way and also sufficient to use as active galactic nuclei and QSOs for absorption-line studies of both Milky Way and extragalactic gas clouds. This spectral region contains a number of key scientific diagnostics, including O VI, H I, D I, and the strong electronic transitions of H-2 and HD.


EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy VIII | 1997

Performance of the double delay line microchannel plate detectors for the Far-Ultraviolet Spectroscopic Explorer

Oswald H. W. Siegmund; Mark A. Gummin; Joseph M. Stock; Giampiero Naletto; Geoffrey A. Gaines; Richard Raffanti; Jeffrey S. Hull; R. Abiad; Ted Rodriguez-Bell; Tony Magoncelli; Patrick Jelinsky; William Donakowski; Karl E. Kromer

The microchannel plate, delay line, detectors developed for the far ultraviolet spectroscopic explorer mission to be launched in 1998 are described. The two FUSE detectors have a large format (approximately equals 184 mm by 10 mm split into two 88.5 by 10 mm segments), with high spatial resolution (less than 20 micrometers by 50 micrometers FWHM, greater than 9000 by 200 resolution elements) and good linearity (plus or minus 25 micrometers), high image stability, and counting rates in excess of 4 by 104 events sec-1. KBr opaque photocathodes have been employed to provide quantum detection efficiencies of 30 - 40% in the 900 - 1200 angstrom range. Microchannel plates with 10 micrometer pores and an 80:1 pore length to diameter ratio, with a 95 mm by 20 mm format have been used in a Z stack configuration to provide the photon amplification (gain approximately equals 2 by 107). These show narrow pulse height distributions (less than 35% FWHM) even with uniform flood illumination, and good background levels (less than 0.3 event cm-2sec-1). Flat field images are demanded by the microchannel plate multifiber boundary fixed pattern noise and are stable.


SPIE's 1994 International Symposium on Optics, Imaging, and Instrumentation | 1994

Delay-line detectors for the UVCS and SUMER instruments on the SOHO Satellite

Oswald H. W. Siegmund; Joseph M. Stock; Daniel R. Marsh; Mark A. Gummin; Richard Raffanti; Jeffrey S. Hull; Geoffrey A. Gaines; Barry Y. Welsh; B. Donakowski; Patrick Jelinsky; Timothy P. Sasseen; James L. Tom; B. Higgins; Tony Magoncelli; Jon W. Hamilton; Steven J. Battel; A. I. Poland; Murzy D. Jhabvala; K. Sizemore; James L. Shannon

Microchannel plate based detectors with cross delay line image readout have been rapidly implemented for the SUMER and UVCS instruments aboard the Solar Orbiting Heliospheric Observatory (SOHO) mission to be launched in July 1995. In October 1993 a fast track program to build and characterize detectors and detector control electronics was initiated. We present the detector system design for the SOHO UVCS and SUMER detector programs, and results from the detector test program. Two deliverable detectors have been built at this point, a demonstration model for UVCS, and the flight Ly (alpha) detector for UVCS, both of which are to be delivered in the next few weeks. Test results have also been obtained with one other demonstration detector system. The detector format is 26mm x 9mm, with 1024 x 360 digitized pixels,using a low resistance Z stack of microchannel plates (MCPs) and a multilayer cross delay line anode (XDL). This configuration provides gains of approximately equals 2 X 107 with good pulse height distributions (<50% FWHM) under uniform flood illumination, and background levels typical for this configuration (approximately equals 0.6 event cm-2 sec-1). Local counting rates up to approximately equals 400 event/pixel/sec have been achieved with no degradation of the MCP gain. The detector and event encoding electronics achieves approximately equals 25 micrometers FWHM with good linearity (+/- approximately equals 1 pixel) and is stable to high global counting rates (>4 X 105 events sec-1). Flat field images are dominated by MCP fixed pattern noise and are stable, but the MCP multifiber modulation usually expected is uncharacteristically absent. The detector and electronics have also successfully passed both thermal vacuum and vibration tests.


SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation | 1995

Microchannel plates for the UVCS and SUMER instruments on the SOHO satellite

Oswald H. W. Siegmund; Mark A. Gummin; Timothy P. Sasseen; Patrick Jelinsky; Geoffrey A. Gaines; Jeffrey S. Hull; Joseph M. Stock; Michael L. Edgar; Barry Y. Welsh; Sharon R. Jelinsky; John V. Vallerga

The microchannel plates for the detectors in the SUMER and UVCS instruments aboard the Solar Orbiting Heliospheric Observatory (SOHO) mission to be launched in late 1995 are described. A low resistance Z stack of microchannel plates (MCPs) is employed in a detector format of 27 mm multiplied by 10 mm using a multilayer cross delay line anode (XDL) with 1024 by 360 digitized pixels. The MCP stacks provide gains of greater than 2 multiplied by 107 with good pulse height distributions (as low as 25% FWHM) under uniform flood illumination. Background rates of approximately equals 0.6 event cm-2 sec-1 are obtained for this configuration. Local counting rates up to approximately equals 800 events/pixel/sec have been achieved with little drop of the MCP gain. MCP preconditioning results are discussed, showing that some MCP stacks fail to have gain decreases when subjected to a high flux UV scrub. Also, although the bare MCP quantum efficiencies are close to those expected (approximately equals 10%), we found that the long wavelength response of KBr photocathodes could be substantially enhanced by the MCP scrubbing process. Flat field images are characterized by a low level of MCP fixed pattern noise and are stable. Preliminary calibration results for the instruments are shown.


Astronomical Telescopes and Instrumentation | 2000

On-orbit performance of the Far Ultraviolet Spectroscopic Explorer (FUSE)

David J. Sahnow; H. W. Moos; Thomas B. Ake; B-G Andersson; M. K. Andre; David Artis; A. F. Berman; William P. Blair; Kenneth R. Brownsberger; H. M. Calvani; Pierre Chayer; Steven J. Conard; Paul D. Feldman; Scott D. Friedman; A. W. Fullerton; Geoffrey A. Gaines; James C. Green; Mark A. Gummin; J. B. Joyce; Mary Elizabeth Kaiser; Jeffrey W. Kruk; Don J. Lindler; Derck L. Massa; Edward M. Murphy; William R. Oegerle; Raymond G. Ohl; Steven Neil Osterman; Bryce A. Roberts; Katherine C. Roth; Ravi Sankrit

The Far Ultraviolet Spectroscopic Explorer (FUSE) satellite was launched into orbit on June 24, 1999. FUSE is now making high resolution ((lambda) /(Delta) (lambda) equals 20,000 - 25,000) observations of solar system, galactic, and extragalactic targets in the far ultraviolet wavelength region (905 - 1187 angstroms). Its high effective area, low background, and planned three year life allow observations of objects which have been too faint for previous high resolution instruments in this wavelength range. In this paper, we describe the on- orbit performance of the FUSE satellite during its first nine months of operation, including measurements of sensitivity and resolution.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2002

The FUV detector for the cosmic origins spectrograph on the Hubble Space Telescope

J.V. Vallerga; J. Zaninovich; Barry Y. Welsh; O. H. W. Siegmund; Jason McPhate; Jeffrey S. Hull; Geoffrey A. Gaines; D. Buzasi

Abstract The Cosmic Origins Spectrograph (COS) is a high throughput spectrometer that will be placed on the Hubble Space Telescope (HST) during the last servicing mission in the year 2003. COS will be the most sensitive UV spectrograph ever flown aboard HST and will investigate such fundamental issues as the ionization and baryon content of the intergalactic medium and the origin of large-scale structure of the Universe. The driving design goal for COS is to maximize throughput at a moderate spectral resolution of >20,000 using optics with very few reflections and detectors with high quantum efficiency in two bandpass channels: FUV (1150– 1775 A ) and NUV (1750– 3200 A ). The COS FUV detector, a windowless microchannel plate (MCP) detector, consists of two segments each 85 mm ×10 mm concatenated end to end with a 9 mm gap between them. The design is based on the Far Ultraviolet Spectroscopic Explorer detectors with identical format and front surface radius of curvature that matches the grating focal plane of the spectrograph. However, enhancements have been made in the design and fabrication of the MCPs, the photocathode, the delay line anode and the readout electronics. We discuss these design enhancements and their significance.


Proceedings of SPIE, the International Society for Optical Engineering | 2000

On-orbit performance of the double delay line detectors for the Far Ultraviolet Spectroscopic Explorer

David J. Sahnow; Mark A. Gummin; Geoffrey A. Gaines; A. W. Fullerton; Mary Elizabeth Kaiser; Oswald H. W. Siegmund

The Far Ultraviolet Spectroscopic Explorer (FUSE) satellite was launched into orbit on June 24, 1999. FUSE is designed to make high resolution ((lambda) /(Delta) (lambda) equals 20,000 - 25,000) observations of solar system, galactic, and extragalactic targets in the far ultraviolet wavelength region (905 - 1187 Angstrom). Its high effective area, low background and planned three year life allow observations of objects which have been too faint for previous high resolution instruments in this wavelength range. The FUSE instrument includes two large format microchannel plate detectors. Each detector system consists of two microchannel plate segments in a Z-stack configuration with double delay line anodes and associated electronics. High detector spatial resolution was required in order to obtain scientific data with high spectral resolving power, and low detector background was necessary in order to observe faint objects. We describe the performance of the FUSE detectors during their first year on orbit, including the mechanical and thermal stability, throughput, background, and flat field of the detector system. We will also discuss the regular single event upsets of the detector electronics, and the strategy adopted in order to minimize their impact on mission efficiency.


UV/EUV and Visible Space Instrumentation for Astronomy and Solar Physics | 2001

HST-COS far-ultraviolet detector: final ground calibration

John V. Vallerga; Jason McPhate; Adrian Martin; Geoffrey A. Gaines; Oswald H. W. Siegmund; Erik Wilkinson; Steven V. Penton; Stephane Beland

The flight microchannel plate detectors to be used in the Cosmic Origins Spectrograph, a fourth generation instrument for the Hubble Space Telescope, have been calibrated in the laboratory before being integrated into the spectrograph. This paper presents the results of these calibrations that include measurements of the detector quantum efficiency, spatial resolution, spatial linearity, flat field, electronic livetime and the local count rate limit.


International Symposium on Optical Science and Technology | 2000

Cosmic Origins Spectograph FUV detector

Jason McPhate; Oswald H. W. Siegmund; Geoffrey A. Gaines; John V. Vallerga; Jeffrey S. Hull

The Far Ultraviolet (FUV) detector for the Cosmic Origins Spectrograph (COS), scheduled to be installed in the Hubble Space Telescope in June 2003, is currently being built by the Experimental Astrophysics Group at The University of California, Berkeley. The COS FUV detector system is based on the detectors flown on the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite with changes to take advantage of technological improvements since the development of those detectors. The COS FUV detector is a dual segmented, cylindrical input face, MCP detector with cross delay line (XDL) readouts. Each segment is a Z-stack of MCPs with an active area 85 mm by 10 mm. The segments are abutted end to end to form a total active area approximately 180 mm by 10 mm (with a gap in the middle). Detector spatial resolution in the long (spectral) dimension is better than 25 microns and in the short dimension (cross-dispersion) is better than 50 microns. The MCPs are coated with a CsI photocathode to achieve the optimal quantum detection efficiency (QDE) in the 1150 - 1750 angstrom bandpass. Improvements in the understanding of the processing required to produce higher QDE MCPs has lead to significant improvements in the FUV QDE relative to previous missions. This paper presents the basic design parameters and performance characteristics of the COS FUV detector.


EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy | 1990

Photoelectron energy spectra of opaque photocathodes in the extreme and far ultraviolet

Oswald H. W. Siegmund; Geoffrey A. Gaines

Measurements of the EUV quantum detection efficiency (QDE) of opaque RbBr, CsBr, and KBr photocathodes are described and investigations of their photoemission characteristics over the 44-1560 A wavelength range are reported. The results show that high QDEs can be obtained in the EUV. Narrow QDE peaks at soft X-ray wavelengths occur at slightly different wavelengths for each of the materials studied. The long-wavelength thresholds vary according to the material band gap. Data on the photoemission from the photocathode layer on the microchannel plate interchannel web area are used to determine the number and energy distribution of the emitted photoelelectrons as a function of wavelength.

Collaboration


Dive into the Geoffrey A. Gaines's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Gummin

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin M. Sirk

University of California

View shared research outputs
Top Co-Authors

Avatar

Michael Sholl

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge