Geoffrey A. Power
University of Guelph
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Geoffrey A. Power.
Journal of Applied Physiology | 2016
Geoffrey A. Power; Matti D. Allen; Kevin J. Gilmore; Daniel W. Stashuk; Timothy J. Doherty; Russell T. Hepple; Tanja Taivassalo; Charles L. Rice
Our group has shown a greater number of functioning motor units (MU) in a cohort of highly active older (∼65 yr) masters runners relative to age-matched controls. Because of the precipitous loss in the number of functioning MUs in the eighth and ninth decades of life it is unknown whether older world class octogenarian masters athletes (MA) would also have greater numbers of functioning MUs compared with age-matched controls. We measured MU numbers and neuromuscular transmission stability in the tibialis anterior of world champion MAs (∼80 yr) and compared the values with healthy age-matched controls (∼80 yr). Decomposition-enhanced spike-triggered averaging was used to collect surface and intramuscular electromyography signals during dorsiflexion at ∼25% of maximum voluntary isometric contraction. Near fiber (NF) MU potential analysis was used to assess neuromuscular transmission stability. For the MAs compared with age-matched controls, the amount of excitable muscle mass (compound muscle action potential) was 14% greater (P < 0.05), there was a trend (P = 0.07) toward a 27% smaller surface-detected MU potential representative of less collateral reinnervation, and 28% more functioning MUs (P < 0.05). Additionally, the MAs had greater MU neuromuscular stability than the controls, as indicated by lower NF jitter and jiggle values (P < 0.05). These results demonstrate that high-performing octogenarians better maintain neuromuscular stability of the MU and mitigate the loss of MUs associated with aging well into the later decades of life during which time the loss of muscle mass and strength becomes functionally relevant. Future studies may identify the concomitant roles genetics and exercise play in neuroprotection.
American Journal of Physiology-cell Physiology | 2016
Geoffrey A. Power; Fabio C. Minozzo; Sally Spendiff; Marie-Eve Filion; Yana Konokhova; Maddy Purves-Smith; Charlotte H. Pion; Mylène Aubertin-Leheudre; José A. Morais; Walter Herzog; Russell T. Hepple; Tanja Taivassalo; Dilson E. Rassier
Normal adult aging is associated with impaired muscle contractile function; however, to what extent cross-bridge kinetics are altered in aging muscle is not clear. We used a slacken restretch maneuver on single muscle fiber segments biopsied from the vastus lateralis of young adults (∼23 yr), older nonathlete (NA) adults (∼80 yr), and age-matched world class masters athletes (MA; ∼80 yr) to assess the rate of force redevelopment (ktr) and cross-bridge kinetics. A post hoc analysis was performed, and only the mechanical properties of slow type fibers based on unloaded shortening velocity (Vo) measurements are reported. The MA and NA were ∼54 and 43% weaker, respectively, for specific force compared with young. Similarly, when force was normalized to cross-sectional area determined via the fiber shape angularity data, both old groups did not differ, and the MA and NA were ∼43 and 48% weaker, respectively, compared with young (P < 0.05). Vo for both MA and NA old groups was 62 and 46% slower, respectively, compared with young. Both MA and NA adults had approximately two times slower values for ktr compared with young. The slower Vo in both old groups relative to young, coupled with a similarly reduced ktr, suggests impaired cross-bridge kinetics are responsible for impaired single fiber contractile properties with aging. These results challenge the widely accepted resilience of slow type fibers to cellular aging.
Experimental Gerontology | 2016
Jonathan W. Wallace; Geoffrey A. Power; Charles L. Rice; Brian H. Dalton
Older adults are more fatigable than young during dynamic tasks, especially those that involve moderate to fast unconstrained velocity shortening contractions. Rate of torque development (RTD), rate of velocity development (RVD) and rate of neuromuscular activation are time-dependent neuromuscular parameters which have not been explored in relation to age-related differences in fatigability. The purpose was to determine whether these time-dependent measures affect the greater age-related fatigability in peak power during moderately fast and maximal effort shortening plantar flexions. Neuromuscular properties were recorded from 10 old (~ 78 years) and 10 young (~ 24 years) men during 50 maximal-effort unconstrained velocity shortening plantar flexions against a resistance equivalent to 20% maximal voluntary isometric contraction torque. At task termination, peak power, and angular velocity, and torque at peak power were decreased by 30, 18, and 16%, respectively, for the young (p < 0.05), and 46, 28, 30% for the old (p < 0.05) compared to pre-fatigue values with the old exhibiting greater reductions across all measures (p<0.05). Voluntary RVD and RTD decreased, respectively, by 24 and 26% in the young and by 47 and 40% in the old at task termination, with greater decrements in the old (p < 0.05). Rate of neuromuscular activation of the soleus decreased over time for both age groups (~ 47%; p < 0.05), but for the medial gastrocnemius (MG) only the old experienced significant decrements (46%) by task termination. All parameters were correlated strongly with the fatigue-related reduction in peak power (r = 0.81-0.94, p < 0.05), except for MG and soleus rates of neuromuscular activation (r = 0.25-0.30, p > 0.10). Fatigue-related declines in voluntary RTD and RVD were both moderately correlated with MG rate of neuromuscular activation (r = 0.51-0.52, p < 0.05), but exhibited a trend with soleus (r = 0.39-0.41, p = 0.07-0.09). Thus, time-dependent factors, RVD and RTD, are likely important indicators of intrinsic muscle properties leading to the greater age-related decline in peak power when performing a repetitive dynamic fatigue task, which may be due to greater fatigue-related central impairments for the older men than young.
Neuroscience Letters | 2018
Emily I. McIntosh; Geoffrey A. Power; Brian H. Dalton
The purpose was to investigate whether exercise-induced muscle weakness of the plantar and dorsiflexors through high-intensity lengthening contractions increases the vestibulomyogenic balance response. Nine males (∼25 years) participated in three experimental testing days to evaluate the vestibular control of standing balance and neuromuscular function of the plantar and dorsiflexors pre- and post (30u202fmin, and 1 and 7u202fdays) high-intensity lengthening plantar and dorsiflexions. To evaluate the vestibular-evoked balance response, participants stood quietly on a force plate while exposed to continuous, random electrical vestibular stimulation (EVS) for two 90-s trials. Relationships between EVS-antero-posterior (AP) forces and EVS-medial gastrocnemius electromyography (EMG) were estimated in the frequency domain (i.e., coherence). Weakness of the right plantar and dorsiflexors were assessed using maximal voluntary contraction (MVC) torque. The lengthening contractions induced a 13 and 24% reduction in plantar and dorsiflexor MVC torque, respectively (pu202f<u202f0.05) of the exercised leg, which did not recover by 1u202fday post. The EVS-EMG coherence increased over a range of frequencies up to 7u202fdays post compared to pre-lengthening contractions. Conversely, EVS-AP forces coherence exhibited limited changes. The greater EVS-EMG coherence post exercise-induced muscle weakness may be a compensatory mechanism to maintain the whole-body vestibular-evoked balance response when muscle strength is reduced.
Frontiers in Physiology | 2018
Kristina Marrelli; Arthur J. Cheng; Julie D Brophy; Geoffrey A. Power
Rheumatoid arthritis (RA) is a chronic, inflammatory disease that affects 1% of the general population. Fatigue is a common complaint of patients with RA, however their perceived fatigue may be more exacerbated than objective measures of fatigue may indicate. The assessment of fatigue is made complex due to inconsistent and vague terms used to define fatigue, and the task dependence of fatigability. Fatigue is defined as a state of exhaustion and decreased strength, while fatigability indicates an individual’s susceptibility to fatigue. In order to offer some clarity to the manifestation of fatigue in clinical populations, in this review we outline that fatigue should be described with subsections that are related to the symptom, such as: perceived fatigability and performance fatigability. Where perceived fatigability indicates the subjective state of the individual and thus involves the individual’s subjective measure of fatigue, performance fatigability would be measured through clinical and laboratory-based assessments that quantify the functional decline in performance. This review describes RA and the various neuromuscular changes associated with the disease that can lead to alterations in both perceived and performance fatigue. From there, we discuss fatigue and RA, how fatigue can be assessed, effects of exercise interventions on RA symptoms and fatigue, and recommendations for future studies investigating subjective and objective measures of fatigability.
European Journal of Applied Physiology | 2018
Ian C. Smith; Jahaan Ali; Geoffrey A. Power; Walter Herzog
PurposeWe examined how muscle length and time between stimuli (inter-pulse interval, IPI) influence declines in force (sag) seen during unfused tetani in the human adductor pollicis muscle.MethodsA series of 16-pulse contractions were evoked with IPIs between 1u2009×u2009and 5u2009×u2009the twitch time to peak tension (TPT) at large (long muscle length) and small (short muscle length) thumb adduction angles. Unfused tetani were mathematically deconstructed into a series of overlapping twitch contractions to examine why sag exhibits length- and IPI-dependencies.ResultsAcross all IPIs tested, sag was 62% greater at short than long muscle length, and sag increased as IPI was increased at both muscle lengths. Force attributable to the second stimulus increased as IPI was decreased. Twitch force declined from maximal values across all IPI tested, with the greatest reductions seen at short muscle length and long IPI. At IPI below 2u2009×u2009TPT, the twitch with highest force occurred earlier than the peak force of the corresponding unfused tetani. Contraction-induced declines in twitch duration (TPTu2009+u2009half relaxation time) were only observed at IPI longer than 1.75u2009×u2009TPT, and were unaffected by muscle length.ConclusionsSag is an intrinsic feature of healthy human adductor pollicis muscle. The length-dependence of sag is related to greater diminution of twitch force at short relative to long muscle length. The dependence of sag on IPI is related to IPI-dependent changes in twitch duration and twitch force, and the timing of peak twitch force relative to the peak force of the associated unfused tetanus.
Applied Physiology, Nutrition, and Metabolism | 2018
Mathew I.B. Debenham; Geoffrey A. Power
Muscle length and preceding activity independently influence rate of torque development (RTD) and electromechanical delay (EMD), but it is unclear whether these parameters interact to optimize RTD and EMD. The purpose of this study was to determine the influence of muscle length and preceding activity on RTD and EMD during voluntary and electrically stimulated (e-stim) contractions. Participants (n = 17, males, 24 ± 3 years) performed isometric knee extensions on a dynamometer. Explosive maximal contractions were performed at 2 knee angles (35° and 100° referenced to a 0° straight leg) without preceding activity (unloaded, UNL) and with preceding activities of 20%, 40%, 60%, and 80% of maximal voluntary contraction (MVC) torque. Absolute and normalized voluntary RTD were slowed with preceding activities ≥40% MVC for long muscle lengths and all preceding activities for short muscle lengths compared with UNL (p < 0.001). Absolute and normalized e-stim RTD were slower with preceding activities ≥40% MVC compared with UNL (p < 0.001) for both muscle lengths. Normalized RTD was faster at short muscle lengths than at long muscle lengths (p < 0.001) for e-stim (∼50%) and voluntary (∼32%) UNL contractions, but this effect was not present for absolute RTD. Muscle length did not affect EMD (p > 0.05). EMD was shorter at 80% MVC compared with UNL (∼35%; p < 0.001) for both muscle lengths during voluntary but not e-stim contractions. While RTD is limited by preceding activity at both muscle lengths, long muscle lengths require greater preceding activity to limit RTD than short muscle lengths, which indicates long muscle lengths may offer a protective effect for RTD against preceding activity.
Archive | 2015
Gavin J. Pinniger; Andrew G. Cresswell; Jonas Rubenson; Neville J. Pires; Heok O. Loi; Damian G. Shannon; Geoffrey A. Power; Demetri P. Makrakos; Charles L. Rice; Anthony A. Vandervoort; Walter Herzog
Archive | 2015
David T. Corr; Walter Herzog; Ryan A. Koppes; Douglas M. Swank; Wolfgang Seiberl; Geoffrey A. Power; Daniel Hahn
Archive | 2015
Andrew D. Walshe; Greg J. Wilson; Wolfgang Seiberl; Geoffrey A. Power; Walter Herzog; Daniel Hahn