Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geoffrey B. Jameson is active.

Publication


Featured researches published by Geoffrey B. Jameson.


FEBS Letters | 1998

12‐Bromododecanoic acid binds inside the calyx of bovine β‐lactoglobulin

Bin Y. Qin; Lawrence K. Creamer; Edward N. Baker; Geoffrey B. Jameson

The X‐ray structure of bovine β‐lactoglobulin with the ligand 12‐bromododecanoic acid as a model for fatty acids has been determined at a resolution of 2.23 Å in the trigonal lattice Z form. The ligand binds inside the calyx, resolving a long‐standing controversy as to where fatty‐acid like ligands bind. The carboxylate head group lies at the surface of the molecule, and the lid to the calyx is open at the pH of crystallization (pH 7.3), consistent with the conformation observed in ligand‐free bovine β‐lactoglobulin in lattice Z at pH 7.1 and pH 8.2.


Tetrahedron | 1994

Alkaloids from the antarctic sponge Kirkpatrickia varialosa. Part 2: Variolin A and N(3′)-methyl tetrahydrovariolin B

Golakoti Trimurtulu; D. John Faulkner; Nigel B. Perry; Laurent Ettouati; Marc Litaudon; John W. Blunt; Murray H. G. Munro; Geoffrey B. Jameson

Abstract Two pyridopyrrolopyrimidine alkaloids, variolin A (2) and N(3′)-methyl tetrahydrovariolin B (3), have been isolated from the Antarctic sponge Kirkpatrickia varialosa, and their structures determined by X-ray crystallography and interpretation of spectral data respectively. N(3′)-Methyl tetrahydrovariolin B (3) is moderately cytotoxic and showed antifungal activity, while variolin A (2) is weakly cytotoxic.


Journal of Biological Chemistry | 2008

Structure and Evolution of a Novel Dimeric Enzyme from a Clinically Important Bacterial Pathogen

Benjamin R. Burgess; R.J. Dobson; Michael F. Bailey; Sarah C. Atkinson; Michael D. W. Griffin; Geoffrey B. Jameson; Michael W. Parker; Juliet A. Gerrard; Matthew A. Perugini

Dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step of the lysine biosynthetic pathway. The tetrameric structure of DHDPS is thought to be essential for enzymatic activity, as isolated dimeric mutants of Escherichia coli DHDPS possess less than 2.5% that of the activity of the wild-type tetramer. It has recently been proposed that the dimeric form lacks activity due to increased dynamics. Tetramerization, by buttressing two dimers together, reduces dynamics in the dimeric unit and explains why all active bacterial DHDPS enzymes to date have been shown to be homo-tetrameric. However, in this study we demonstrate for the first time that DHDPS from methicillin-resistant Staphylococcus aureus (MRSA) exists in a monomer-dimer equilibrium in solution. Fluorescence-detected analytical ultracentrifugation was employed to show that the dimerization dissociation constant of MRSA-DHDPS is 33 nm in the absence of substrates and 29 nm in the presence of (S)-aspartate semialdehyde (ASA), but is 20-fold tighter in the presence of the substrate pyruvate (1.6 nm). The MRSA-DHDPS dimer exhibits a ping-pong kinetic mechanism (kcat = 70 ± 2 s-1, KmPyruvate = 0.11 ± 0.01 mm, and KmASA = 0.22 ± 0.02 mm) and shows ASA substrate inhibition with a KsiASA of 2.7 ± 0.9 mm. We also demonstrate that unlike the E. coli tetramer, the MRSA-DHDPS dimer is insensitive to lysine inhibition. The near atomic resolution (1.45Å) crystal structure confirms the dimeric quaternary structure and reveals that the dimerization interface of the MRSA enzyme is more extensive in buried surface area and noncovalent contacts than the equivalent interface in tetrameric DHDPS enzymes from other bacterial species. These data provide a detailed mechanistic insight into DHDPS catalysis and the evolution of quaternary structure of this important bacterial enzyme.


Journal of Molecular Biology | 2008

Evolution of quaternary structure in a homotetrameric enzyme.

Michael D. W. Griffin; R.J. Dobson; F. Grant Pearce; Laurence Antonio; Andrew E. Whitten; Chu K. Liew; Joel P. Mackay; Jill Trewhella; Geoffrey B. Jameson; Matthew A. Perugini; Juliet A. Gerrard

Dihydrodipicolinate synthase (DHDPS) is an essential enzyme in (S)-lysine biosynthesis and an important antibiotic target. All X-ray crystal structures solved to date reveal a homotetrameric enzyme. In order to explore the role of this quaternary structure, dimeric variants of Escherichia coli DHDPS were engineered and their properties were compared to those of the wild-type tetrameric form. X-ray crystallography reveals that the active site is not disturbed when the quaternary structure is disrupted. However, the activity of the dimeric enzymes in solution is substantially reduced, and a tetrahedral adduct of a substrate analogue is observed to be trapped at the active site in the crystal form. Remarkably, heating the dimeric enzymes increases activity. We propose that the homotetrameric structure of DHDPS reduces dynamic fluctuations present in the dimeric forms and increases specificity for the first substrate, pyruvate. By restricting motion in a key catalytic motif, a competing, non-productive reaction with a substrate analogue is avoided. Small-angle X-ray scattering and mutagenesis data, together with a B-factor analysis of the crystal structures, support this hypothesis and lead to the suggestion that in at least some cases, the evolution of quaternary enzyme structures might serve to optimise the dynamic properties of the protein subunits.


Acta Crystallographica Section D-biological Crystallography | 2005

The crystal structures of native and (S)-lysine-bound dihydrodipicolinate synthase from Escherichia coli with improved resolution show new features of biological significance.

R.J. Dobson; Michael D. W. Griffin; Geoffrey B. Jameson; Juliet A. Gerrard

Dihydrodipicolinate synthase (DHDPS) mediates the key first reaction common to the biosynthesis of (S)-lysine and meso-diaminopimelate. The activity of DHDPS is allosterically regulated by the feedback inhibitor (S)-lysine. The crystal structure of DHDPS from Escherichia coli has previously been published, but to only a resolution of 2.5 A, and the structure of the lysine-bound adduct was known to only 2.94 A resolution. Here, the crystal structures of native and (S)-lysine-bound dihydrodipicolinate synthase from E. coli are presented to 1.9 and 2.0 A, respectively, resolutions that allow, in particular, more accurate definition of the protein structure. The general architecture of the active site is found to be consistent with previously determined structures, but with some important differences. Arg138, which is situated at the entrance of the active site and is thought to be involved in substrate binding, has an altered conformation and is connected via a water molecule to Tyr133 of the active-site catalytic triad. This suggests a hitherto unknown function for Arg138 in the DHDPS mechanism. Additionally, a re-evaluation of the dimer-dimer interface reveals a more extensive network of interactions than first thought. Of particular interest is the higher resolution structure of DHDPS with (S)-lysine bound at the allosteric site, which is remote to the active site, although connected to it by a chain of conserved water molecules. (S)-Lysine has a slightly altered conformation from that originally determined and does not appear to alter the DHDPS structure as others have reported.


International Journal of Biological Macromolecules | 1991

Structure, function and flexibility of human lactoferrin

Edward N. Baker; Bryan F. Anderson; Heather M. Baker; M. Haridas; Geoffrey B. Jameson; Gillian E. Norris; Sylvia V. Rumball

X-ray structure analyses of four different forms of human lactoferrin (diferric, dicupric, an oxalate-substituted dicupric, and apo-lactoferrin), and of bovine diferric lactoferrin, have revealed various ways in which the protein structure adapts to different structural and functional states. Comparison of diferric and dicupric lactoferrins has shown that different metals can, through slight variations in the metal position, have different stereochemistries and anion coordination without any significant change in the protein structure. Substitution of oxalate for carbonate, as seen in the structure of a hybrid dicupric complex with oxalate in one site and carbonate in the other, shows that larger anions can be accommodated by small side-chain movements in the binding site. The multidomain nature of lactoferrin also allows rigid body movements. Comparison of human and bovine lactoferrins, and of these with rabbit serum transferrin, shows that the relative orientations of the two lobes in each molecule can vary; these variations may contribute to differences in their binding properties. The structure of apo-lactoferrin demonstrates the importance of large-scale domain movements for metal binding and release and suggests that in solution an equilibrium exists between open and closed forms, with the open form being the active binding species. These structural forms are shown to be similar to those seen for bacterial periplasmic binding proteins, and lead to a common model for the various steps in the binding process.


Biophysical Journal | 2012

Bovine β-Lactoglobulin Is Dimeric Under Imitative Physiological Conditions: Dissociation Equilibrium and Rate Constants over the pH Range of 2.5–7.5

Davide Mercadante; Laurence D. Melton; Gillian E. Norris; Trevor S. Loo; Martin A. K. Williams; R.J. Dobson; Geoffrey B. Jameson

The oligomerization of β-lactoglobulin (βLg) has been studied extensively, but with somewhat contradictory results. Using analytical ultracentrifugation in both sedimentation equilibrium and sedimentation velocity modes, we studied the oligomerization of βLg variants A and B over a pH range of 2.5-7.5 in 100 mM NaCl at 25°C. For the first time, to our knowledge, we were able to estimate rate constants (k(off)) for βLg dimer dissociation. At pH 2.5 k(off) is low (0.008 and 0.009 s(-1)), but at higher pH (6.5 and 7.5) k(off) is considerably greater (>0.1 s(-1)). We analyzed the sedimentation velocity data using the van Holde-Weischet method, and the results were consistent with a monomer-dimer reversible self-association at pH 2.5, 3.5, 6.5, and 7.5. Dimer dissociation constants K(D)(2-1) fell close to or within the protein concentration range of ∼5 to ∼45 μM, and at ∼45 μM the dimer predominated. No species larger than the dimer could be detected. The K(D)(2-1) increased as |pH-pI| increased, indicating that the hydrophobic effect is the major factor stabilizing the dimer, and suggesting that, especially at low pH, electrostatic repulsion destabilizes the dimer. Therefore, through Poisson-Boltzmann calculations, we determined the electrostatic dimerization energy and the ionic charge distribution as a function of ionic strength at pH above (pH 7.5) and below (pH 2.5) the isoelectric point (pI∼5.3). We propose a mechanism for dimer stabilization whereby the added ionic species screen and neutralize charges in the vicinity of the dimer interface. The electrostatic forces of the ion cloud surrounding βLg play a key role in the thermodynamics and kinetics of dimer association/dissociation.


Acta Crystallographica Section D-biological Crystallography | 1998

Structure of human apolactoferrin at 2.0 A resolution. Refinement and analysis of ligand-induced conformational change.

Geoffrey B. Jameson; Bryan F. Anderson; Gillian E. Norris; David H. Thomas; Edward N. Baker

The three-dimensional structure of a form of human apolactoferrin, in which one lobe (the N-lobe) has an open conformation and the other lobe (the C-lobe) is closed, has been refined at 2.0 A resolution. The refinement, by restrained least-squares methods, used synchrotron radiation X-ray diffraction data combined with a lower resolution diffractometer data set. The final refined model (5346 protein atoms from residues 1-691, two Cl- ions and 363 water molecules) gives a crystallographic R factor of 0.201 (Rfree = 0. 286) for all 51305 reflections in the resolution range 10.0-2.0 A. The conformational change in the N-lobe, which opens up the binding cleft, involves a 54 degrees rotation of the N2 domain relative to the N1 domain. This also results in a small reorientation of the two lobes relative to one another with a further approximately 730 A2 of surface area being buried as the N2 domain contacts the C-lobe and the inter-lobe helix. These new contacts also involve the C-terminal helix and provide a mechanism through which the conformational and iron-binding status of the N-lobe can be signalled to the C-lobe. Surface-area calculations indicate a fine balance between open and closed forms of lactoferrin, which both have essentially the same solvent-accessible surface. Chloride ions are bound in the anion-binding sites of both lobes, emphasizing the functional significance of these sites. The closed configuration of the C-lobe, attributed in part to weak stabilization by crystal packing interactions, has important implications for lactoferrin dynamics. It shows that a stable closed structure, essentially identical to that of the iron-bound form, can be formed in the absence of iron binding.


Acta Crystallographica Section D-biological Crystallography | 1999

Structure of recombinant human lactoferrin expressed in Aspergillus awamori.

Xiaolin Sun; Heather M. Baker; Steven C. Shewry; Geoffrey B. Jameson; Edward N. Baker

Human lactoferrin (hLf) has considerable potential as a therapeutic agent. Overexpression of hLf in the fungus Aspergillus awamori has resulted in the availability of very large quantities of this protein. Here, the three-dimensional structure of the recombinant hLf has been determined by X-ray crystallography at a resolution of 2.2 A. The final model, comprising 5339 protein atoms (residues 1-691, 294 solvent molecules, two Fe3+and two CO32- ions), gives an R factor of 0.181 (free R = 0.274) after refinement against 32231 reflections in the resolution range 10-2.2 A. Superposition of the recombinant hLf structure onto the native milk hLf structure shows a very high level of correspondence; the main-chain atoms for the entire polypeptide can be superimposed with an r.m.s. deviation of only 0.3 A and there are no significant differences in side-chain conformations or in the iron-binding sites. Dynamic properties, as measured by B-value distributions or iron-release kinetics, also agree closely. This shows that the structure of the protein is not affected by the mode of expression, the use of strain-improvement procedures or the changes in glycosylation due to the fungal system.


Inorganic Chemistry | 2011

Toward the self-assembly of metal-organic nanotubes using metal-metal and π-stacking interactions: bis(pyridylethynyl) silver(I) metallo-macrocycles and coordination polymers.

Kelly J. Kilpin; Martin L. Gower; Shane G. Telfer; Geoffrey B. Jameson; James D. Crowley

Shape-persistent macrocycles and planar organometallic complexes are beginning to show considerable promise as building blocks for the self-assembly of a variety of supramolecular materials including nanofibers, nanowires, and liquid crystals. Here we report the synthesis and characterization of a family of planar di- and tri-silver(I) containing metallo-macrocycles designed to self-assemble into novel metal-organic nanotubes through a combination of π-stacking and metal-metal interactions. The silver(I) complexes have been fully characterized by elemental analysis, high resolution electrospray ionization mass spectrometry (HR-ESI-MS), IR, (1)H and (13)C NMR spectroscopy, and the solution data are consistent with the formation of the metallo-macrocycles. Four of the complexes have been structurally characterized using X-ray crystallography. However, only the di-silver(I) complex formed with 1,3-bis(pyridin-3-ylethynyl)benzene is found to maintain its macrocyclic structure in the solid state. The di-silver(I) shape-persistent macrocycle assembles into a nanoporous chicken-wire like structure, and ClO(4)(-) anions and disordered H(2)O molecules fill the pores. The silver(I) complexes of 2,6-bis(pyridin-3-ylethynyl)pyridine and 1,4-di(3-pyridyl)buta-1,3-diyne ring-open and crystallize as non-porous coordination polymers.

Collaboration


Dive into the Geoffrey B. Jameson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

R.J. Dobson

University of Canterbury

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sally Brooker

MacDiarmid Institute for Advanced Materials and Nanotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge