Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geoffrey C. Toon is active.

Publication


Featured researches published by Geoffrey C. Toon.


Philosophical Transactions of the Royal Society A | 2011

The Total Carbon Column Observing Network

Debra Wunch; Geoffrey C. Toon; Jean-Francois Blavier; Rebecca A. Washenfelder; Justus Notholt; Brian J. Connor; David W. T. Griffith; Vanessa Sherlock; Paul O. Wennberg

A global network of ground-based Fourier transform spectrometers has been founded to remotely measure column abundances of CO2, CO, CH4, N2O and other molecules that absorb in the near-infrared. These measurements are directly comparable with the near-infrared total column measurements from space-based instruments. With stringent requirements on the instrumentation, acquisition procedures, data processing and calibration, the Total Carbon Column Observing Network (TCCON) achieves an accuracy and precision in total column measurements that is unprecedented for remote-sensing observations (better than 0.25% for CO2). This has enabled carbon-cycle science investigations using the TCCON dataset, and allows the TCCON to provide a link between satellite measurements and the extensive ground-based in situ network.


Geophysical Research Letters | 2011

New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity

Christian Frankenberg; Joshua B. Fisher; John R. Worden; Grayson Badgley; Sassan Saatchi; Jung-Eun Lee; Geoffrey C. Toon; A. Butz; Martin Jung; Akihiko Kuze; Tatsuya Yokota

Our ability to close the Earths carbon budget and predict feedbacks in a warming climate depends critically on knowing where, when and how carbon dioxide is exchanged between the land and atmosphere. Terrestrial gross primary production (GPP) constitutes the largest flux component in the global carbon budget, however significant uncertainties remain in GPP estimates and its seasonality. Empirically, we show that global spaceborne observations of solar induced chlorophyll fluorescence – occurring during photosynthesis – exhibit a strong linear correlation with GPP. We found that the fluorescence emission even without any additional climatic or model information has the same or better predictive skill in estimating GPP as those derived from traditional remotely-sensed vegetation indices using ancillary data and model assumptions. In boreal summer the generally strong linear correlation between fluorescence and GPP models weakens, attributable to discrepancies in savannas/croplands (18–48% higher fluorescence-based GPP derived by simple linear scaling), and high-latitude needleleaf forests (28–32% lower fluorescence). Our results demonstrate that retrievals of chlorophyll fluorescence provide direct global observational constraints for GPP and open an entirely new viewpoint on the global carbon cycle. We anticipate that global fluorescence data in combination with consolidated plant physiological fluorescence models will be a step-change in carbon cycle research and enable an unprecedented robustness in the understanding of the current and future carbon cycle.


Journal of Geophysical Research | 2012

Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations

Camille Risi; David Noone; John R. Worden; Christian Frankenberg; Gabriele P. Stiller; Michael Kiefer; B. Funke; Kaley A. Walker; Peter F. Bernath; Matthias Schneider; Debra Wunch; Vanessa Sherlock; Nicholas M Deutscher; David W. T. Griffith; Paul O. Wennberg; Kimberly Strong; Dan Smale; Emmanuel Mahieu; Sabine Barthlott; Frank Hase; O. E. García; Justus Notholt; Thorsten Warneke; Geoffrey C. Toon; David Stuart Sayres; Sandrine Bony; Jeonghoon Lee; Derek Brown; Ryu Uemura; Christophe Sturm

The goal of this study is to determine how H2O and HDO measurements in water vapor can be used to detect and diagnose biases in the representation of processes controlling tropospheric humidity in atmospheric general circulation models (GCMs). We analyze a large number of isotopic data sets (four satellite, sixteen ground-based remote-sensing, five surface in situ and three aircraft data sets) that are sensitive to different altitudes throughout the free troposphere. Despite significant differences between data sets, we identify some observed HDO/H2O characteristics that are robust across data sets and that can be used to evaluate models. We evaluate the isotopic GCM LMDZ, accounting for the effects of spatiotemporal sampling and instrument sensitivity. We find that LMDZ reproduces the spatial patterns in the lower and mid troposphere remarkably well. However, it underestimates the amplitude of seasonal variations in isotopic composition at all levels in the subtropics and in midlatitudes, and this bias is consistent across all data sets. LMDZ also underestimates the observed meridional isotopic gradient and the contrast between dry and convective tropical regions compared to satellite data sets. Comparison with six other isotope-enabled GCMs from the SWING2 project shows that biases exhibited by LMDZ are common to all models. The SWING2 GCMs show a very large spread in isotopic behavior that is not obviously related to that of humidity, suggesting water vapor isotopic measurements could be used to expose model shortcomings. In a companion paper, the isotopic differences between models are interpreted in terms of biases in the representation of processes controlling humidity. Copyright


Journal of Geophysical Research | 2006

Carbon dioxide column abundances at the Wisconsin Tall Tower site

Rebecca A. Washenfelder; Geoffrey C. Toon; J.-F. Blavier; Z. Yang; Norton Allen; Paul O. Wennberg; S. A. Vay; Daniel Michael Matross; Bruce C. Daube

We have developed an automated observatory for measuring atmospheric column abundances of CO_2 and O_2 using near-infrared spectra of the Sun obtained with a high spectral resolution Fourier Transform Spectrometer (FTS). This is the first dedicated laboratory in a new network of ground-based observatories named the Total Carbon Column Observing Network. This network will be used for carbon cycle studies and validation of spaceborne column measurements of greenhouse gases. The observatory was assembled in Pasadena, California, and then permanently deployed to northern Wisconsin during May 2004. It is located in the heavily forested Chequamegon National Forest at the WLEF Tall Tower site, 12 km east of Park Falls, Wisconsin. Under clear sky conditions, ∼0.1% measurement precision is demonstrated for the retrieved column CO_2 abundances. During the Intercontinental Chemical Transport Experiment–North America and CO_2 Boundary Layer Regional Airborne Experiment campaigns in summer 2004, the DC-8 and King Air aircraft recorded eight in situ CO_2 profiles over the WLEF site. Comparison of the integrated aircraft profiles and CO_2 column abundances shows a small bias (∼2%) but an excellent correlation.


Geophysical Research Letters | 2009

Emissions of greenhouse gases from a North American megacity

Debra Wunch; Paul O. Wennberg; Geoffrey C. Toon; G. Keppel-Aleks; Y. G. Yavin

Atmospheric column abundances of carbon dioxide (CO_2), carbon monoxide (CO), methane (CH_4) and nitrous oxide (N_2O) have been measured above the South Coast air basin (SCB), a densely populated urban region of Southern California, USA, which includes Los Angeles and the surrounding suburbs. Large diurnal variations in CO and CH_4 are observed which correlate well with those in CO_2. Weaker correlations are seen between N_2O and CO_2, with large uncertainties. We compute yearly SCB emissions of CO and CH_4 to be 1.4 ± 0.3 Tg CO and 0.6 ± 0.1 Tg CH_4. We compare our calculated emissions to the California Air Resources Board (CARB) and the Emission Database for Global Atmospheric Research (EDGAR) estimates. Our measurements confirm that urban emissions are a significant source of CH_4 and in fact may be substantially higher than currently estimated. If our emissions are typical of other urban centers, these findings suggest that urban emissions could contribute 7–15% to the global anthropogenic budget of methane.


Journal of Geophysical Research | 2006

Space‐based near‐infrared CO2 measurements: Testing the Orbiting Carbon Observatory retrieval algorithm and validation concept using SCIAMACHY observations over Park Falls, Wisconsin

H. Bösch; Geoffrey C. Toon; B. Sen; Rebecca A. Washenfelder; Paul O. Wennberg; Michael Buchwitz; R. de Beek; J. P. Burrows; David Crisp; M. Christi; Brian J. Connor; Vijay Natraj; Yuk L. Yung

Space-based measurements of reflected sunlight in the near-infrared (NIR) region promise to yield accurate and precise observations of the global distribution of atmospheric CO_2. The Orbiting Carbon Observatory (OCO) is a future NASA mission, which will use this technique to measure the column-averaged dry air mole fraction of CO_2 (X_(CO)_2) with the precision and accuracy needed to quantify CO_2 sources and sinks on regional scales (∼1000 × 1000 km^2) and to characterize their variability on seasonal timescales. Here, we have used the OCO retrieval algorithm to retrieve (X_(CO)_2) and surface pressure from space-based Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) measurements and from coincident ground-based Fourier transform spectrometer (FTS) measurements of the O_2 A band at 0.76 μm and the 1.58 μm CO_2 band for Park Falls, Wisconsin. Even after accounting for a systematic error in our representation of the O_2 absorption cross sections, we still obtained a positive bias between SCIAMACHY and FTS (X_(CO)_2) retrievals of ∼3.5%. Additionally, the retrieved surface pressures from SCIAMACHY systematically underestimate measurements of a calibrated pressure sensor at the FTS site. These findings lead us to speculate about inadequacies in the forward model of our retrieval algorithm. By assuming a 1% intensity offset in the O_2 A band region for the SCIAMACHY (X_(CO)_2) retrieval, we significantly improved the spectral fit and achieved better consistency between SCIAMACHY and FTS (X_(CO)_2) retrievals. We compared the seasonal cycle of (X_(CO)_2)at Park Falls from SCIAMACHY and FTS retrievals with calculations of the Model of Atmospheric Transport and Chemistry/Carnegie-Ames-Stanford Approach (MATCH/CASA) and found a good qualitative agreement but with MATCH/CASA underestimating the measured seasonal amplitude. Furthermore, since SCIAMACHY observations are similar in viewing geometry and spectral range to those of OCO, this study represents an important test of the OCO retrieval algorithm and validation concept using NIR spectra measured from space. Finally, we argue that significant improvements in precision and accuracy could be obtained from a dedicated CO_2 instrument such as OCO, which has much higher spectral and spatial resolutions than SCIAMACHY. These measurements would then provide critical data for improving our understanding of the carbon cycle and carbon sources and sinks.


Geophysical Research Letters | 2002

Spaceborne measurements of atmospheric CO2 by high-resolution NIR spectrometry of reflected sunlight: An introductory study

Zhiming Kuang; Jack S. Margolis; Geoffrey C. Toon; David Crisp; Yuk L. Yung

We introduce a strategy for measuring the column-averaged CO_2 dry air volume mixing ratio X_(CO_2) from space. It employs high resolution spectra of reflected sunlight taken simultaneously in near-infrared (NIR) CO_2 (1.58-mm and 2.06-mm) and O_2 (0.76-mm) bands. Simulation experiments, show that precisions of ~0.3–2.5 ppmv for X_(CO_2) can be achieved from individual clear sky soundings for a range of atmospheric/surface conditions when the scattering optical depth t_s is less than ~0.3. When averaged over many clear sky soundings, random errors become negligible. This high precision facilitates the identification and correction of systematic errors, which are recognized as the most serious impediment for the satellite X_(CO_2) measurements. We briefly discuss potential sources of systematic errors, and show that some of them may result in geographically varying biases in the measured X_(CO_2). This highlights the importance of careful calibration and validation measurements, designed to identify and eliminate sources of these biases. We conclude that the 3-band, spectrometric approach using NIR reflected sunlight has the potential for highly accurate X_(CO_2) measurements.


Geophysical Research Letters | 2001

Severe and extensive denitrification in the 1999–2000 Arctic winter stratosphere

P. J. Popp; M. J. Northway; J. C. Holecek; R. S. Gao; D. W. Fahey; J. W. Elkins; D. F. Hurst; P. A. Romashkin; Geoffrey C. Toon; B. Sen; S. Schauffler; R. J. Salawitch; C. R. Webster; R. L. Herman; H. Jost; T. P. Bui; Paul A. Newman; Leslie R. Lait

Observations in the 1999-2000 Arctic winter stratosphere show the most severe and extensive denitrification ever observed in the northern hemisphere. Denitrification was inferred from in situ measurements conducted during high-altitude aircraft flights between January and March 2000. Average removal of more than 60% of the reactive nitrogen reservoir (NO y ) was observed in air masses throughout the core of the Arctic vortex. Denitrification was observed at altitudes between 16 and 21 km, with the most severe denitrification observed at 20 to 21 km. Nitrified air masses were also observed, primarily at lower altitudes. These results show that denitrification in the Arctic lower stratosphere can approach the severity and extent of that previously observed only in the Antarctic.


Journal of Geophysical Research | 1996

Validation of hydrogen fluoride measurements made by the Halogen Occultation Experiment from the UARS platform

J. M. Russell; Lance E. Deaver; Mingzhao Luo; Jae H. Park; Larry L. Gordley; A. F. Tuck; Geoffrey C. Toon; M. R. Gunson; Wesley A. Traub; David G. Johnson; Kenneth W. Jucks; David G. Murcray; Rudolphe Zander; Ira G. Nolt; C. R. Webster

The Halogen Occultation Experiment (HALOE) on UARS uses the method of solar occultation limb sounding to measure the composition and structure of the stratosphere and mesosphere. One of the HALOE channels is spectrally centered at 3.4 μm to measure the vertical profile and global distribution of hydrogen chloride. The mean difference between HALOE and 14 balloon correlative underflight measurements ranges from 8% to 19% throughout most of the stratosphere. This difference is within the limits of error bar overlap for the two data sets. The mean differences between HALOE and HCl data from ATMOS flights on the space shuttle is of the order of 15 to 20% for the 1992 flight and 10% for the 1993 flight. Generally, HALOE results tend to be low in these comparisons. Also, comparisons with two-dimensional model calculations and HALOE data are in good qualitative agreement regarding vertical profile shapes and features in a pressure versus latitude cross section. HCl values increase from ∼0.3 parts per billion by volume (ppbv) to 1 ppbv in the lower stratosphere to 2.6 ppbv to 3.3 ppbv just above the stratopause which is the upper limit of HALOE single-profile measurements. There is a dependence of HCl results on the angle between the orbit plane and the Earth-Sun vector with HCl varying by ±9% in the upper stratosphere. This variation appears to be altitude dependent and it is not discernible in the data below about 10 mbar.


Journal of Geophysical Research | 2003

Long‐term trends of inorganic chlorine from ground‐based infrared solar spectra: Past increases and evidence for stabilization

C. P. Rinsland; Emmanuel Mahieu; Rodolphe Zander; Nicholas Jones; M. P. Chipperfield; Aaron Goldman; J. Anderson; James M. Russell; Philippe Demoulin; Justus Notholt; Geoffrey C. Toon; J.-F. Blavier; B. Sen; Ralf Sussmann; S. W. Wood; Arndt Meier; David W. T. Griffith; Linda S. Chiou; F. J. Murcray; Thomas M. Stephen; F. Hase; S. Mikuteit; Astrid Schulz; Thomas Blumenstock

Long-term time series of hydrogen chloride (HCl) and chlorine nitrate (ClONO2) total column abundances has been retrieved from high spectral resolution ground-based solar absorption spectra recorded with infrared Fourier transform spectrometers at nine NDSC (Network for the Detection of Stratospheric Change) sites in both Northern and Southern Hemispheres. The data sets span up to 24 years and most extend until the end of 2001. The time series of Cl-y (defined here as the sum of the HCl and ClONO2 columns) from the three locations with the longest time-span records show rapid increases until the early 1990s superimposed on marked day-to-day, seasonal and inter-annual variability. Subsequently, the buildup in Cl-y slows and reaches a broad plateau after 1996, also characterized by variability. A similar time evolution is also found in the total chlorine concentration at 55 km altitude derived from Halogen Occultation Experiment (HALOE) global observations since 1991. The stabilization of inorganic chlorine observed in both the total columns and at 55 km altitude indicates that the near-global 1993 organic chlorine (CCly) peak at the Earths surface has now propagated over a broad altitude range in the upper atmosphere, though the time lag is difficult to quantify precisely from the current data sets, due to variability. We compare the three longest measured time series with two-dimensional model calculations extending from 1977 to 2010, based on a halocarbon scenario that assumes past measured trends and a realistic extrapolation into the future. The model predicts broad Cl-y maxima consistent with the long-term observations, followed by a slow Cl-y decline reaching 12-14% relative to the peak by 2010. The data reported here confirm the effectiveness of the Montreal Protocol and its Amendments and Adjustments in progressively phasing out the major man-related perturbations of the stratospheric ozone layer, in particular, the anthropogenic chlorine-bearing source gases. (Less)

Collaboration


Dive into the Geoffrey C. Toon's collaboration.

Top Co-Authors

Avatar

Paul O. Wennberg

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Francois Blavier

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Sen

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J.-F. Blavier

Jet Propulsion Laboratory

View shared research outputs
Top Co-Authors

Avatar

Coleen M. Roehl

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

G. Keppel-Aleks

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge