Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geoffrey E. Hinton is active.

Publication


Featured researches published by Geoffrey E. Hinton.


Nature | 1988

Learning representations by back-propagating errors

David E. Rumelhart; Geoffrey E. Hinton; Ronald J. Williams

We describe a new learning procedure, back-propagation, for networks of neurone-like units. The procedure repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector. As a result of the weight adjustments, internal ‘hidden’ units which are not part of the input or output come to represent important features of the task domain, and the regularities in the task are captured by the interactions of these units. The ability to create useful new features distinguishes back-propagation from earlier, simpler methods such as the perceptron-convergence procedure1.


Neural Computation | 2006

A fast learning algorithm for deep belief nets

Geoffrey E. Hinton; Simon Osindero; Yee Whye Teh

We show how to use complementary priors to eliminate the explaining-away effects that make inference difficult in densely connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory. The fast, greedy algorithm is used to initialize a slower learning procedure that fine-tunes the weights using a contrastive version of the wake-sleep algorithm. After fine-tuning, a network with three hidden layers forms a very good generative model of the joint distribution of handwritten digit images and their labels. This generative model gives better digit classification than the best discriminative learning algorithms. The low-dimensional manifolds on which the digits lie are modeled by long ravines in the free-energy landscape of the top-level associative memory, and it is easy to explore these ravines by using the directed connections to display what the associative memory has in mind.


IEEE Signal Processing Magazine | 2012

Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups

Geoffrey E. Hinton; Li Deng; Dong Yu; George E. Dahl; Abdel-rahman Mohamed; Navdeep Jaitly; Andrew W. Senior; Vincent Vanhoucke; Patrick Nguyen; Tara N. Sainath; Brian Kingsbury

Most current speech recognition systems use hidden Markov models (HMMs) to deal with the temporal variability of speech and Gaussian mixture models (GMMs) to determine how well each state of each HMM fits a frame or a short window of frames of coefficients that represents the acoustic input. An alternative way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition benchmarks, sometimes by a large margin. This article provides an overview of this progress and represents the shared views of four research groups that have had recent successes in using DNNs for acoustic modeling in speech recognition.


Neural Computation | 1991

Adaptive mixtures of local experts

Robert A. Jacobs; Michael I. Jordan; Steven J. Nowlan; Geoffrey E. Hinton

We present a new supervised learning procedure for systems composed of many separate networks, each of which learns to handle a subset of the complete set of training cases. The new procedure can be viewed either as a modular version of a multilayer supervised network, or as an associative version of competitive learning. It therefore provides a new link between these two apparently different approaches. We demonstrate that the learning procedure divides up a vowel discrimination task into appropriate subtasks, each of which can be solved by a very simple expert network.


Neural Computation | 2002

Training products of experts by minimizing contrastive divergence

Geoffrey E. Hinton

It is possible to combine multiple latent-variable models of the same data by multiplying their probability distributions together and then renormalizing. This way of combining individual expert models makes it hard to generate samples from the combined model but easy to infer the values of the latent variables of each expert, because the combination rule ensures that the latent variables of different experts are conditionally independent when given the data. A product of experts (PoE) is therefore an interesting candidate for a perceptual system in which rapid inference is vital and generation is unnecessary. Training a PoE by maximizing the likelihood of the data is difficult because it is hard even to approximate the derivatives of the renormalization term in the combination rule. Fortunately, a PoE can be trained using a different objective function called contrastive divergence whose derivatives with regard to the parameters can be approximated accurately and efficiently. Examples are presented of contrastive divergence learning using several types of expert on several types of data.


IEEE Transactions on Acoustics, Speech, and Signal Processing | 1989

Phoneme recognition using time-delay neural networks

Alex Waibel; Toshiyuki Hanazawa; Geoffrey E. Hinton; Kiyohiro Shikano; Kevin J. Lang

The authors present a time-delay neural network (TDNN) approach to phoneme recognition which is characterized by two important properties: (1) using a three-layer arrangement of simple computing units, a hierarchy can be constructed that allows for the formation of arbitrary nonlinear decision surfaces, which the TDNN learns automatically using error backpropagation; and (2) the time-delay arrangement enables the network to discover acoustic-phonetic features and the temporal relationships between them independently of position in time and therefore not blurred by temporal shifts in the input. As a recognition task, the speaker-dependent recognition of the phonemes B, D, and G in varying phonetic contexts was chosen. For comparison, several discrete hidden Markov models (HMM) were trained to perform the same task. Performance evaluation over 1946 testing tokens from three speakers showed that the TDNN achieves a recognition rate of 98.5% correct while the rate obtained by the best of the HMMs was only 93.7%. >


Proceedings of the NATO Advanced Study Institute on Learning in graphical models | 1998

A view of the EM algorithm that justifies incremental, sparse, and other variants

Radford M. Neal; Geoffrey E. Hinton

The EM algorithm performs maximum likelihood estimation for data in which some variables are unobserved. We present a function that resembles negative free energy and show that the M step maximizes this function with respect to the model parameters and the E step maximizes it with respect to the distribution over the unobserved variables. From this perspective, it is easy to justify an incremental variant of the EM algorithm in which the distribution for only one of the unobserved variables is recalculated in each E step. This variant is shown empirically to give faster convergence in a mixture estimation problem. A variant of the algorithm that exploits sparse conditional distributions is also described, and a wide range of other variant algorithms are also seen to be possible.


international conference on acoustics, speech, and signal processing | 2013

Speech recognition with deep recurrent neural networks

Alex Graves; Abdel-rahman Mohamed; Geoffrey E. Hinton

Recurrent neural networks (RNNs) are a powerful model for sequential data. End-to-end training methods such as Connectionist Temporal Classification make it possible to train RNNs for sequence labelling problems where the input-output alignment is unknown. The combination of these methods with the Long Short-term Memory RNN architecture has proved particularly fruitful, delivering state-of-the-art results in cursive handwriting recognition. However RNN performance in speech recognition has so far been disappointing, with better results returned by deep feedforward networks. This paper investigates deep recurrent neural networks, which combine the multiple levels of representation that have proved so effective in deep networks with the flexible use of long range context that empowers RNNs. When trained end-to-end with suitable regularisation, we find that deep Long Short-term Memory RNNs achieve a test set error of 17.7% on the TIMIT phoneme recognition benchmark, which to our knowledge is the best recorded score.


Neural Networks: Tricks of the Trade (2nd ed.) | 2012

A Practical Guide to Training Restricted Boltzmann Machines

Geoffrey E. Hinton

Restricted Boltzmann machines (RBMs) have been used as generative models of many different types of data. RBMs are usually trained using the contrastive divergence learning procedure. This requires a certain amount of practical experience to decide how to set the values of numerical meta-parameters. Over the last few years, the machine learning group at the University of Toronto has acquired considerable expertise at training RBMs and this guide is an attempt to share this expertise with other machine learning researchers.


IEEE Transactions on Audio, Speech, and Language Processing | 2012

Acoustic Modeling Using Deep Belief Networks

Abdel-rahman Mohamed; George E. Dahl; Geoffrey E. Hinton

Gaussian mixture models are currently the dominant technique for modeling the emission distribution of hidden Markov models for speech recognition. We show that better phone recognition on the TIMIT dataset can be achieved by replacing Gaussian mixture models by deep neural networks that contain many layers of features and a very large number of parameters. These networks are first pre-trained as a multi-layer generative model of a window of spectral feature vectors without making use of any discriminative information. Once the generative pre-training has designed the features, we perform discriminative fine-tuning using backpropagation to adjust the features slightly to make them better at predicting a probability distribution over the states of monophone hidden Markov models.

Collaboration


Dive into the Geoffrey E. Hinton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terrence J. Sejnowski

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Max Welling

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Dayan

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge