Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geoffrey G. Hicks is active.

Publication


Featured researches published by Geoffrey G. Hicks.


Nature Neuroscience | 2012

Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs

Clotilde Lagier-Tourenne; Magdalini Polymenidou; Kasey R. Hutt; Anthony Q. Vu; Michael Baughn; Stephanie C. Huelga; Kevin M. Clutario; Shuo-Chien Ling; Tiffany Y. Liang; Curt Mazur; Edward Wancewicz; Aneeza S. Kim; Andy Watt; Sue Freier; Geoffrey G. Hicks; John Paul Donohue; Lily Shiue; C. Frank Bennett; John Ravits; Don W. Cleveland; Gene W. Yeo

FUS/TLS (fused in sarcoma/translocated in liposarcoma) and TDP-43 are integrally involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. We found that FUS/TLS binds to RNAs from >5,500 genes in mouse and human brain, primarily through a GUGGU-binding motif. We identified a sawtooth-like binding pattern, consistent with co-transcriptional deposition of FUS/TLS. Depletion of FUS/TLS from the adult nervous system altered the levels or splicing of >950 mRNAs, most of which are distinct from RNAs dependent on TDP-43. Abundance of only 45 RNAs was reduced after depletion of either TDP-43 or FUS/TLS from mouse brain, but among these were mRNAs that were transcribed from genes with exceptionally long introns and that encode proteins that are essential for neuronal integrity. Expression levels of a subset of these were lowered after TDP-43 or FUS/TLS depletion in stem cell–derived human neurons and in TDP-43 aggregate–containing motor neurons in sporadic ALS, supporting a common loss-of-function pathway as one component underlying motor neuron death from misregulation of TDP-43 or FUS/TLS.


Nature Cell Biology | 2011

miR-34 miRNAs provide a barrier for somatic cell reprogramming

Yong Jin Choi; Chao-Po Lin; Jaclyn J. Ho; Xingyue He; Nobuhiro Okada; Pengcheng Bu; Yingchao Zhong; Sang Yong Kim; Margaux J. Bennett; Caifu Chen; Arzu Öztürk; Geoffrey G. Hicks; Greg J. Hannon; Lin He

Somatic reprogramming induced by defined transcription factors is a low-efficiency process that is enhanced by p53 deficiency. So far, p21 is the only p53 target shown to contribute to p53 repression of iPSC (induced pluripotent stem cell) generation, indicating that additional p53 targets may regulate this process. Here, we demonstrate that miR-34 microRNAs (miRNAs), particularly miR-34a, exhibit p53-dependent induction during reprogramming. Mir34a deficiency in mice significantly increased reprogramming efficiency and kinetics, with miR-34a and p21 cooperatively regulating somatic reprogramming downstream of p53. Unlike p53 deficiency, which enhances reprogramming at the expense of iPSC pluripotency, genetic ablation of Mir34a promoted iPSC generation without compromising self-renewal or differentiation. Suppression of reprogramming by miR-34a was due, at least in part, to repression of pluripotency genes, including Nanog, Sox2 and Mycn (also known as N-Myc). This post-transcriptional gene repression by miR-34a also regulated iPSC differentiation kinetics. miR-34b and c similarly repressed reprogramming; and all three miR-34 miRNAs acted cooperatively in this process. Taken together, our findings identified miR-34 miRNAs as p53 targets that play an essential role in restraining somatic reprogramming.


Current Biology | 2005

The RNA Binding Protein TLS Is Translocated to Dendritic Spines by mGluR5 Activation and Regulates Spine Morphology

Ritsuko Fujii; Shigeo Okabe; Tomoe Urushido; Kiyoshi Inoue; Atsushi Yoshimura; Taro Tachibana; Toru Nishikawa; Geoffrey G. Hicks; Toru Takumi

Neuronal dendrites, together with dendritic spines, exhibit enormously diverse structure. Selective targeting and local translation of mRNAs in dendritic spines have been implicated in synapse remodeling or synaptic plasticity. The mechanism of mRNA transport to the postsynaptic site is a fundamental question in local dendritic translation. TLS (translocated in liposarcoma), previously identified as a component of hnRNP complexes, unexpectedly showed somatodendritic localization in mature hippocampal pyramidal neurons. In the present study, TLS was translocated to dendrites and was recruited to dendrites not only via microtubules but also via actin filaments. In mature hippocampal pyramidal neurons, TLS accumulated in the spines at excitatory postsynapses upon mGluR5 activation, which was accompanied by an increased RNA content in dendrites. Consistent with the in vitro studies, TLS-null hippocampal pyramidal neurons exhibited abnormal spine morphology and lower spine density. Our results indicate that TLS participates in mRNA sorting to the dendritic spines induced by mGluR5 activation and regulates spine morphology to stabilize the synaptic structure.


Nature Genetics | 2000

Fus deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death

Geoffrey G. Hicks; Nagendra Singh; Abudi Nashabi; Sabine Mai; Gracjan Bozek; Ludger Klewes; Djula Arapovic; Erica K. White; Mark J. Koury; Eugene M. Oltz; Luc Van Kaer; H. E. Ruley

The gene FUS (also known as TLS (for translocated in liposarcoma) and hnRNP P2) is translocated with the gene encoding the transcription factor ERG-1 in human myeloid leukaemias. Although the functions of wild-type FUS are unknown, the protein contains an RNA-recognition motif and is a component of nuclear riboprotein complexes. FUS resembles a transcription factor in that it binds DNA, contributes a transcriptional activation domain to the FUS–ERG oncoprotein and interacts with several transcription factors in vitro. To better understand FUS function in vivo, we examined the consequences of disrupting Fus in mice. Our results indicate that Fus is essential for viability of neonatal animals, influences lymphocyte development in a non-cell-intrinsic manner, has an intrinsic role in the proliferative responses of B cells to specific mitogenic stimuli and is required for the maintenance of genomic stability. The involvement of a nuclear riboprotein in these processes in vivo indicates that Fus is important in genome maintenance.


Biochemistry and Cell Biology | 2007

Regulation of the cellular DNA double-strand break response

Kendra L. Cann; Geoffrey G. Hicks

DNA double-strand breaks occur frequently in cycling cells, and are also induced by exogenous sources, including ionizing radiation. Cells have developed integrated double-strand break response pathways to cope with these lesions, including pathways that initiate DNA repair (either via homologous recombination or nonhomologous end joining), the cell-cycle checkpoints (G1-S, intra-S phase, and G2-M) that provide time for repair, and apoptosis. However, before any of these pathways can be activated, the damage must first be recognized. In this review, we will discuss how the response of mammalian cells to DNA double-strand breaks is regulated, beginning with the activation of ATM, the pinnacle kinase of the double-strand break signalling cascade.


Nucleic Acids Research | 2011

The IKMC web portal: a central point of entry to data and resources from the International Knockout Mouse Consortium.

Martin Ringwald; Vivek Iyer; Jeremy Mason; Kevin Stone; Hamsa Tadepally; James A. Kadin; Janan T. Eppig; Darren J. Oakley; Sebastien Briois; Elia Stupka; Vincenza Maselli; Damian Smedley; Songyan Liu; Jens Hansen; Richard A. Baldock; Geoffrey G. Hicks; William C. Skarnes

The International Knockout Mouse Consortium (IKMC) aims to mutate all protein-coding genes in the mouse using a combination of gene targeting and gene trapping in mouse embryonic stem (ES) cells and to make the generated resources readily available to the research community. The IKMC database and web portal (www.knockoutmouse.org) serves as the central public web site for IKMC data and facilitates the coordination and prioritization of work within the consortium. Researchers can access up-to-date information on IKMC knockout vectors, ES cells and mice for specific genes, and follow links to the respective repositories from which corresponding IKMC products can be ordered. Researchers can also use the web site to nominate genes for targeting, or to indicate that targeting of a gene should receive high priority. The IKMC database provides data to, and features extensive interconnections with, other community databases.


PLOS Genetics | 2013

ALS-associated FUS mutations result in compromised FUS alternative splicing and autoregulation.

Yueqin Zhou; Songyan Liu; Guodong Liu; Arzu Öztürk; Geoffrey G. Hicks

The gene encoding a DNA/RNA binding protein FUS/TLS is frequently mutated in amyotrophic lateral sclerosis (ALS). Mutations commonly affect its carboxy-terminal nuclear localization signal, resulting in varying deficiencies of FUS nuclear localization and abnormal cytoplasmic accumulation. Increasing evidence suggests deficiencies in FUS nuclear function may contribute to neuron degeneration. Here we report a novel FUS autoregulatory mechanism and its deficiency in ALS-associated mutants. Using FUS CLIP-seq, we identified significant FUS binding to a highly conserved region of exon 7 and the flanking introns of its own pre-mRNAs. We demonstrated that FUS is a repressor of exon 7 splicing and that the exon 7-skipped splice variant is subject to nonsense-mediated decay (NMD). Overexpression of FUS led to the repression of exon 7 splicing and a reduction of endogenous FUS protein. Conversely, the repression of exon 7 was reduced by knockdown of FUS protein, and moreover, it was rescued by expression of EGFP-FUS. This dynamic regulation of alternative splicing describes a novel mechanism of FUS autoregulation. Given that ALS-associated FUS mutants are deficient in nuclear localization, we examined whether cells expressing these mutants would be deficient in repressing exon 7 splicing. We showed that FUS harbouring R521G, R522G or ΔExon15 mutation (minor, moderate or severe cytoplasmic localization, respectively) directly correlated with respectively increasing deficiencies in both exon 7 repression and autoregulation of its own protein levels. These data suggest that compromised FUS autoregulation can directly exacerbate the pathogenic accumulation of cytoplasmic FUS protein in ALS. We showed that exon 7 skipping can be induced by antisense oligonucleotides targeting its flanking splice sites, indicating the potential to alleviate abnormal cytoplasmic FUS accumulation in ALS. Taken together, FUS autoregulation by alternative splicing provides insight into a molecular mechanism by which FUS-regulated pre-mRNA processing can impact a significant number of targets important to neurodegeneration.


Molecular and Cellular Biology | 2003

The High-Mobility-Group Box Protein SSRP1/T160 Is Essential for Cell Viability in Day 3.5 Mouse Embryos

Shang Cao; Heather H. Bendall; Geoffrey G. Hicks; Abudi Nashabi; Hitoshi Sakano; Yoichi Shinkai; Marisa Gariglio; Eugene M. Oltz; H. Earl Ruley

ABSTRACT The high-mobility-group (HMG) SSRP1 protein is a member of a conserved chromatin-remodeling complex (FACT/DUF/CP) implicated in DNA replication, basal and regulated transcription, and DNA repair. To assist in the functional analysis of SSRP1, the Ssrp1 gene was targeted in murine embryonic stem cells, and the mutation was introduced into the germ line. Embryos homozygous for the targeted allele die soon after implantation, and preimplantation blastocysts are defective for cell outgrowth and/or survival in vitro. The Ssrp1 mutation was also crossed into a p53 null background without affecting growth and/or survival defects caused by loss of Ssrp1 function. Thus, Ssrp1 appears to encode nonredundant and p53-independent functions that are essential for cell viability.


Carcinogenesis | 2008

Cells deficient in oxidative DNA damage repair genes Myh and Ogg1 are sensitive to oxidants with increased G2/M arrest and multinucleation

Yali Xie; Hanjing Yang; Jeffrey H. Miller; Diana M. Shih; Geoffrey G. Hicks; Jiuyong Xie; Robert P. C. Shiu

Oxidative stress generated from endogenous and exogenous sources causes oxidative DNA damage. The most frequent mutagenic base lesion 7,8-dihydro-8-oxoguanine and the resulting mismatched adenine are removed by OGG1 and MYH in mammals. Deficiencies in human MYH or mouse MYH and OGG1 result in tumor predisposition but the underlying molecular mechanism is not fully understood. To facilitate the study of the roles of MYH and OGG1 in the protection against oxidative stress, we generated mouse embryonic fibroblast cell lines deficient in these genes. Myh and Ogg1 double knockout cells were more sensitive than wild type to oxidants (hydrogen peroxide and t-butyl hydroperoxide), but not to cis-platinum or gamma-irradiations. The low dosage oxidative stress resulted in more reduction of S phase and increase of G(2)/M phase in Myh(-/-)Ogg1(-/-) cells than in wild-type cells, but a similar level of cell death in both cells. The oxidants also induced more multinucleated cells in Myh(-/-)Ogg1(-/-) cells than in wild-type, accompanied by centrosome amplification and multipolar spindle formation. Thus, under oxidative stress, Myh and Ogg1 are likely required for normal cell-cycle progression and nuclear division, suggesting multiple roles of Myh and Ogg1 in the maintenance of genome stability and tumor prevention.


Acta neuropathologica communications | 2015

FUS/TLS deficiency causes behavioral and pathological abnormalities distinct from amyotrophic lateral sclerosis

Yoshihiro Kino; Chika Washizu; Masaru Kurosawa; Mizuki Yamada; Haruko Miyazaki; Takumi Akagi; Tsutomu Hashikawa; Hiroshi Doi; Toru Takumi; Geoffrey G. Hicks; Nobutaka Hattori; Tomomi Shimogori; Nobuyuki Nukina

IntroductionFUS/TLS is an RNA-binding protein whose genetic mutations or pathological inclusions are associated with neurological diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration, and essential tremor (ET). It is unclear whether their pathogenesis is mediated by gain or loss of function of FUS/TLS.ResultsHere, we established outbred FUS/TLS knockout mice to clarify the effects of FUS/TLS dysfunction in vivo. We obtained homozygous knockout mice that grew into adulthood. Importantly, they did not manifest ALS- or ET-like phenotypes until nearly two years. Instead, they showed distinct histological and behavioral alterations including vacuolation in hippocampus, hyperactivity, and reduction in anxiety-like behavior. Knockout mice showed transcriptome alterations including upregulation of Taf15 and Hnrnpa1, while they have normal morphology of RNA-related granules such as Gems.ConclusionsCollectively, FUS/TLS depletion causes phenotypes possibly related to neuropsychiatric and neurodegenerative conditions, but distinct from ALS and ET, together with specific alterations in RNA metabolisms.

Collaboration


Dive into the Geoffrey G. Hicks's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Molly Pind

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar

Songyan Liu

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toru Takumi

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yueqin Zhou

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge