Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geoffrey Gebbie is active.

Publication


Featured researches published by Geoffrey Gebbie.


Journal of the Atmospheric Sciences | 2007

Modulation of Westerly Wind Bursts by Sea Surface Temperature: A Semistochastic Feedback for ENSO

Geoffrey Gebbie; Ian Eisenman; Andrew T. Wittenberg; Eli Tziperman

Abstract Westerly wind bursts (WWBs) in the equatorial Pacific are known to play a significant role in the development of El Nino events. They have typically been treated as a purely stochastic external forcing of ENSO. Recent observations, however, show that WWB characteristics depend upon the large-scale SST field. The consequences of such a WWB modulation by SST are examined using an ocean general circulation model coupled to a statistical atmosphere model (i.e., a hybrid coupled model). An explicit WWB component is added to the model with guidance from a 23-yr observational record. The WWB parameterization scheme is constructed such that the likelihood of WWB occurrence increases as the western Pacific warm pool extends: a “semistochastic” formulation, which has both deterministic and stochastic elements. The location of the WWBs is parameterized to migrate with the edge of the warm pool. It is found that modulation of WWBs by SST strongly affects the characteristics of ENSO. In particular, coupled fe...


Paleoceanography | 2014

How much did Glacial North Atlantic Water shoal

Geoffrey Gebbie

Observations of δ13C and Cd/Ca from benthic foraminifera have been interpreted to reflect a shoaling of northern source waters by about 1000 m during the Last Glacial Maximum, with the degree of shoaling being significant enough for the water mass to be renamed Glacial North Atlantic Intermediate Water. These nutrient tracers, however, may not solely reflect changes in water mass distributions. To quantify the distribution of Glacial North Atlantic Water, we perform a glacial water mass decomposition where the sparsity of data, geometrical constraints, and nonconservative tracer effects are taken into account, and the extrapolation for the unknown water mass end-members is guided by the modern-day circulation. Under the assumption that the glacial sources of remineralized material are similar to that of the modern day, we find a steady solution consistent with 241 δ13C, 87 Cd/Ca, and 174 δ18O observations and their respective uncertainties. The water mass decomposition indicates that the core of Glacial North Atlantic Water shoals and southern source water extends in greater quantities into the abyssal North Atlantic, as previously inferred. The depth of the deep northern-southern water mass interface and the volume of North Atlantic Water, however, are not grossly different from that of the modern day. Under this scenario, the vertical structure of glacial δ13C and Cd/Ca is primarily due to the greater accumulation of nutrients in lower North Atlantic Water, which may be a signal of the hoarding of excess carbon from the atmosphere by the glacial Atlantic.


Science | 2015

A warm and poorly ventilated deep Arctic Mediterranean during the last glacial period

David J. R. Thornalley; Henning A. Bauch; Geoffrey Gebbie; Weifu Guo; Martin Ziegler; Stefano M. Bernasconi; Stephen Barker; Luke C Skinner; Jimin Yu

Slow circulation in the cold Arctic The Arctic Ocean and Nordic Seas together supply dense, sinking water to the Atlantic Meridional Overturning Circulation (AMOC). The redistribution of heat by the AMOC, in turn, exerts a major influence on climate in the Northern Hemisphere. Thornalley et al. report that during the last glacial period, those regions were nearly stagnant and supplied almost none of the water that they presently contribute to the AMOC. This low rate of flow into the Atlantic was probably due to an absence of vigorous deep-water formation in the Arctic Mediterranean as a consequence of the extensive ice cover there at that time. Science, this issue p. 706 Deep-water formation in some Arctic seas nearly ceased during the peak of the last glacial period. Changes in the formation of dense water in the Arctic Ocean and Nordic Seas [the “Arctic Mediterranean” (AM)] probably contributed to the altered climate of the last glacial period. We examined past changes in AM circulation by reconstructing radiocarbon ventilation ages of the deep Nordic Seas over the past 30,000 years. Our results show that the glacial deep AM was extremely poorly ventilated (ventilation ages of up to 10,000 years). Subsequent episodic overflow of aged water into the mid-depth North Atlantic occurred during deglaciation. Proxy data also suggest that the deep glacial AM was ~2° to 3°C warmer than modern temperatures; deglacial mixing of the deep AM with the upper ocean thus potentially contributed to the melting of sea ice, icebergs, and terminal ice-sheet margins.


Journal of Physical Oceanography | 2007

Can Paleoceanographic Tracers Constrain Meridional Circulation Rates

Peter John Huybers; Geoffrey Gebbie; Olivier Marchal

Abstract The ability of paleoceanographic tracers to constrain rates of transport is examined using an inverse method to combine idealized observations with a geostrophic model. Considered are the spatial distribution, accuracy, and types of tracers required to constrain changes in meridional transport within an idealized single-hemisphere basin. Measurements of density and radioactive tracers each act to constrain rates of transport. Conservative tracers, while not of themselves able to inform regarding rates of transport, improve constraints when coupled with density or radioactive observations. It is found that the tracer data would require an accuracy one order of magnitude better than is presently available for paleo-observations to conclusively rule out factor-of-2 changes in meridional transport, even when assumed available over the entire model domain. When data are available only at the margins and bottom of the model, radiocarbon is unable to constrain transport while density remains effective o...


Journal of Physical Oceanography | 2012

The Mean Age of Ocean Waters Inferred from Radiocarbon Observations: Sensitivity to Surface Sources and Accounting for Mixing Histories

Geoffrey Gebbie; Peter John Huybers

A number of previous observational studies have found that the waters of the deep Pacific Ocean have an age, or elapsed time since contact with the surface, of 700‐1000 yr. Numerical models suggest ages twice as old. Here, the authors present an inverse framework to determine the mean age and its upper and lower bounds givenGlobalOceanDataAnalysisProject(GLODAP) radiocarbonobservations, andthey show that the potential range of ages increases with the number of constituents or sources that are included in the analysis. The inversion requires decomposing the World Ocean into source waters, which is obtained here using the total matrix intercomparison (TMI) method at up to 2 83 28 horizontal resolution with 11 113 surface sources. The authors find that the North Pacific at 2500-m depth can be no younger than 1100 yr old, which is older than some previous observational estimates. Accounting for the broadness of surface regions where waters originate leads to a reservoir-age correction of almost 100 yr smaller than would be estimated with a two or three water-mass decomposition and explains some of the discrepancy with previous observational studies. A best estimate of mean age is also presented using the mixing history along circulation pathways. Subject to the caveats that inference of the mixing history would benefit from further observations and that radiocarbon cannot rule out the presence of extremely old waters from exotic sources, the deep North Pacific waters are 1200‐1500 yr old, which is more in line with existing numerical model results.


Journal of Physical Oceanography | 2010

Total Matrix Intercomparison: A Method for Determining the Geometry of Water-Mass Pathways

Geoffrey Gebbie; Peter John Huybers

Abstract Ocean tracer distributions have long been used to decompose the deep ocean into constituent water masses, but previous inverse methods have generally been limited to just a few water masses that have been defined by a subjective choice of static property combinations. Through air–sea interaction and upper-ocean processes, all surface locations are potential sources of distinct tracer properties, and thus it is natural to define a distinct water type for each surface site. Here, a new box inversion method is developed to explore the contributions of all surface locations to the ocean interior, as well as the degree to which the observed tracer fields can be explained by a steady-state circulation with unchanging surface-boundary conditions. The total matrix intercomparison (TMI) method is a novel way to invert observations to solve for the pathways connecting every surface point to every interior point. In the limiting case that the circulation is steady and that five conservative tracers are perf...


Journal of Climate | 2009

Predictability of SST-Modulated Westerly Wind Bursts

Geoffrey Gebbie; Eli Tziperman

Westerly wind bursts (WWBs), a significant player in ENSO dynamics, are modeled using an observationally motivated statistical approach that relates the characteristics of WWBs to the large-scale sea surface temperature. Although the WWB wind stress at a given location may be a nonlinear function of SST, the characteristics of WWBs are well described as a linear function of SST. Over 50% of the interannual variance in the WWB likelihood, zonal location, duration, and fetch is explained by changes in SST. The model captures what is seen in a 17-yr record of satellite-derived winds: the eastward migration and increased occurrence of wind bursts as the western Pacific warm pool extends. The WWB model shows significant skill in predicting the interannual variability of the characteristics of WWBs, while the prediction skill of the WWB seasonal cycle is limited by the record length of available data. The novel formulation of the WWB model can be implemented in a stochastic or deterministic mode, where the deterministic mode predicts the ensemble-mean WWB characteristics. Therefore, the WWB model is especially appropriate for ensemble prediction experiments with existing ENSO models that are not capable of simulating realistic WWBs on their own. Should only the slowly varying component of WWBs be important for ENSO prediction, this WWB model allows a shortcut to directly compute the slowly varying ensemble-mean wind field without performing many realizations.


Paleoceanography | 2016

How well would modern-day oceanic property distributions be known with paleoceanographic-like observations?

Geoffrey Gebbie; Gregory J. Streletz; Howard J. Spero

Author(s): Gebbie, G; Streletz, GJ; Spero, HJ | Abstract: ©2016. American Geophysical Union. All Rights Reserved. Compilations of paleoceanographic observations for the deep sea now contain a few hundred points along the oceanic margins, mid-ocean ridges, and bathymetric highs, where seawater conditions are indirectly recorded in the chemistry of buried benthic foraminiferal shells. Here we design an idealized experiment to test our predictive ability to reconstruct modern-day seawater properties by considering paleoceanographic-like data. We attempt to reconstruct the known, modern-day global distributions by using a state estimation method that combines a kinematic tracer transport model with observations that have paleoceanographic characteristics. When a modern-like suite of observations (Θ, practical salinity, seawater δ18O, δ13CDIC, PO4, NO3, and O2) is used from the sparse paleolocations, the state estimate is consistent with the withheld data at all depths below 1500 m, suggesting that the observational sparsity can be overcome. Physical features, such as the interbasin gradients in deep δ13CDIC and the vertical structure of Atlantic δ13CDIC, are accurately reconstructed. The state estimation method extracts useful information from the pointwise observations to infer distributions at the largest oceanic scales (at least 10,000 km horizontally and 1500 m vertically) and outperforms a standard optimal interpolation technique even though neither dynamical constraints nor constraints from surface boundary fluxes are used. When the sparse observations are more realistically restricted to the paleoceanographic proxy observations of δ13C, δ18O, and Cd/Ca, however, the large-scale property distributions are no longer recovered coherently. At least three more water mass tracers are likely needed at the core sites in order to accurately reconstruct the large-scale property distributions of the Last Glacial Maximum.


Paleoceanography | 2015

Inferring surface water equilibrium calcite δ18O during the last deglacial period from benthic foraminiferal records: Implications for ocean circulation

Daniel E. Amrhein; Geoffrey Gebbie; Olivier Marchal; Carl Wunsch

The ocean circulation modifies mixed layer (ML) tracer signals as they are communicated to the deep ocean by advection and mixing. We develop and apply a procedure for using tracer signals observed “upstream” (by planktonic foraminifera) and “downstream” (by benthic foraminifera) to constrain how tracer signals are modified by the intervening circulation and, by extension, to constrain properties of that circulation. A history of ML equilibrium calcite δ18O (δ18Oc) spanning the last deglaciation is inferred from a least-squares fit of eight benthic foraminiferal δ18Oc records to Greens function estimated for the modern ocean circulation. Disagreements between this history and the ML history implied by planktonic records would indicate deglacial circulation changes. No deviations from the modern circulation are diagnosed because the two estimates of ML δ18Oc agree within their uncertainties over the deglaciation, but diagnostics suggest data collection and modeling procedures useful for inferring circulation changes. Uncertainties of benthic-derived ML δ18Oc are lowest in the high-latitude regions chiefly responsible for ventilating the deep ocean; additional high-resolution planktonic records constraining these regions are of particular utility. Benthic records from the Southern Ocean, where data are sparse, appear to have the most power to reduce uncertainties in benthic-derived ML δ18Oc. Understanding the spatiotemporal covariance of deglacial ML δ18Oc will also improve abilities of δ18Oc records to constrain deglacial circulation.


Journal of Computational Science | 2016

Interpolating sparse scattered data using flow information

Gregory J. Streletz; Geoffrey Gebbie; Oliver Kreylos; Bernd Hamann; Louise H. Kellogg; Howard J. Spero

Abstract Scattered data interpolation and approximation techniques allow for the reconstruction of a scalar field based upon a finite number of scattered samples of the field. In general, the fidelity of the reconstruction with respect to the original scalar field tends to deteriorate as the number of samples decreases. For the situation of very sparse sampling, the results may not be acceptable at all. However, if it is known that the scalar field of interest is correlated with a known flow field – as is the case when the scalar field represents the value of an oceanographic tracer that propagates under the influence of the oceans flow – then this knowledge can be exploited to enhance the scattered data reconstruction method. One way to exploit flow field information is to use it to construct a modified notion of distance between points. Replacing the standard Euclidean distance metric with a flow-field-aware notion of distance provides a method for extending standard scattered data interpolation methods into flow-based methods that produce superior results for very sparse data. The resulting reconstructions typically have lower root-mean-square errors than reconstructions that do not use the flow information, and qualitatively they often appear physically more realistic.

Collaboration


Dive into the Geoffrey Gebbie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivier Marchal

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Andrew T. Wittenberg

Geophysical Fluid Dynamics Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bernd Hamann

University of California

View shared research outputs
Top Co-Authors

Avatar

Daniel E. Amrhein

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ian Eisenman

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge